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New Bound for Classical Zero-Error Capacity using
Partially Commutative Monoids as Counting Tools

Andresso da Silva, Francisco Marcos de Assis

Abstract— In this paper we propose a new bound for the
classical zero-error capacity of a communication channel using
partially commutative monoids as enumeration tools. Specifically,
we analyze the relationship between classical zero-error capacity
and the growth factor of the monoid, β(G), of a graph G.
Although the value of β(G) allows us to calculate an upper bound
for the classical zero-error capacity, determining it requires
counting the number of cliques in a graph, which is an NP-
Complete problem. Our main result is that the classical zero-
error capacity is always lower than the integer part of β(G).

Keywords— Partially Commutative Monoid, Zero-Error Ca-
pacity, Partial Order, Cliques.

I. INTRODUCTION

Shannon [1] defined the zero-error capacity of a discrete
memoryless channel (DMC) as the highest information trans-
mission rate at which the error probabilitiy in decoding equals
zero. A DMC (see Fig. 1) is defined by using a finite transition
matrix [p(j|i)] where each element p(j|i) is the probability
of receiving the symbol j given that symbol i was sent. In
addition, the probabilities of sending the symbols i and j are
independent.

Encoder Channel ([p(j|i)])

Noise

X
Decoder

YW Ŵ

Fig. 1: Communication system.

Symbols i and j are said to be confusable in decoding
if there exists an output symbol t such that p(t|i) > 0 and
p(t|j) > 0. The error probability is the probability of noise
causing the output symbol to be decoded incorrectly. One
can define the channel adjacency graph G by considering the
error probability. In this graph, the input symbols compose
the vertices set, and two symbols u and v are connected if
they can be confusable. In Fig. 2 are depicted a DMC and its
adjacency graph, where a, . . . , e and A, . . . , F are the input
and output symbols, respectively.

Even for small adjacency graphs, the zero-error capacity
can be difficult to find. In general, zero-error capacity is not
computable [7]. For example, the zero-error capacity of the
pentagon remained unknown until Lovász [2] defined ϑ(G),
known as Lovász’s ϑ function. This function allows one to
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Fig. 2: DMC and Adjacency Graph.

calculate the zero-error capacity of the pentagon indirectly.
The zero-error capacity and the Lovász ϑ function continue to
be studied in various contexts [3], [4], [5], [6].

Cartier and Foata [8] investigated combinatorial properties
of sequences defined in finite alphabets where elements a and
b can have the property that ab and ba are equivalent. These
sequences are called partially commutative monoids (PCM).
When two elements have this property, they are said to
commute, and this commutativity allows some sequences
of symbols to be equivalent to others, forming equivalence
classes. The commutativity graph represents the commutativity
relations, where commuting symbols are connected by an
edge.

Fisher [14] showed that determining the number of equiva-
lence classes is an NP-Complete problem because it depends
on the number of cliques of the commutativity graph. The
number of cliques defines the dependence polynomial where
the inverse of its smallest real root is the growth factor of the
monoid, β.

By employing the theory of partially commutative
monoids (PCM), in this paper, we establish the relationship
between the growth factor of the monoid β and the indepen-
dence number of the graph α, for both computing is an NP-
complete problem. From this, we establish an upper bound for
the zero-error capacity of DMC channels.

In the Section II are presented the essential concepts in-
volving graphs, zero-error capacity, and partially commutative
monoids. In the Section III the main results are introduced.
Section IV concludes the paper.

II. FUNDAMENTALS

A. Graph Theory

An undirected simple graph is a pair G = (V,E) where V
is called the vertex set and E ⊂ V ×V is called the edge set.
In G multiple edges connecting two vertices are not allowed,
nor are edges leaving and arriving at the same vertex. Two
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vertices a, b ∈ V are adjacent if ab ∈ E and are called non-
adjacent otherwise. The complement of a graph G = (V,E) is
the graph G = (V,E) with the same set of vertices V , where
any two distinct vertices in V are adjacent in G if and only if
they are non-adjacent in G.

A stable set of a graph G consists of vertices S ⊆ V such
that no pair of elements belonging to S are adjacent. A stable
set is maximal if it is not a subset of another stable set. Among
the maximal stable sets of a graph, the cardinality of the largest
one is called independence number, denoted by α(G).

A clique of a graph G is a set of mutually adjacent vertices
C ⊆ V . A clique is maximal if it is not a subset of another
clique. The cardinality of the largest clique is called clique
number, ω(G). Thus, the vertex set C is a clique of G if and
only if C is a stable set of the complement of G, i.e., ω(G) =
α(G). Finding the clique and the independence number are
NP-Complete problems [10].

A k-coloring of a graph is the assignment of k colors to its
vertices. A coloring is proper when no pair of adjacent vertices
has the same color. The k-coloring can be understood as the
partitioning of V into {V1, V2, . . . , Vk}, where Vi denotes the
sets (possibly empty) of vertices that have color i, also called
color classes. The minimum k value of colors needed to make
a proper coloring of G is called chromatic number, denoted by
χ(G). In a graph with the largest clique having ω(G) mutually
connected vertices, at least ω(G) colors are required, that is,
χ(G) ≥ ω(G). Perfect graphs are those in which χ(G) =
ω(G).

The strong product of two graphs G and H is denoted by
G �H and the strong product of k copies of G = (V,E) is
denoted by Gk. Each vertex of Gk represents a word of length
k defined in V . Two vertices (words) u = (u1, u2, . . . , uk) and
v = (v1, v2, . . . , vk) of Gk are connected by an edge if there
exists at least one pair ui and vi such that uivi ∈ E and this
two words are called confusable.

It is possible to select the largest number of words of length
k such that they are not mutually adjacent so that there is
no error in decoding. These words correspond to the largest
stable set of Gk, and the number of words corresponds to the
independence number of Gk, α(Gk). Furthermore, it is known
that α(G)k ≤ α(Gk) [2].

B. Classical Zero-Error Capacity

The zero-error transmission capacity associated with the
graph G is defined by some authors, e.g., Lovász [2] as

Θ(G)
∆
= sup

n

n
√
α(Gn) = lim

n→∞

n
√
α(Gn), (1)

and is also called Shannon Capacity. However, it is interesting
to recall that Shannon himself has defined the zero-error
capacity as C0 = log2 Θ(G). In this paper, by convenience,
we utilize (1) to refer to the zero-error capacity.

Shannon [1] demonstrated (see Theorem 1) that if the graph
G is perfect, then α(Gk) = αk(G) and therefore, in that case,
Θ(G) = supk

k
√
α(Gk) = α(G). However, this does not hold

for most graphs, even the simplest ones, as in the pentagon.
Theorem 1 ([1]): If G is a perfect graph, then Θ(G) =

α(G).

To illustrate how the strong product is applied to adjacency
graphs, consider the case with the adjacency channel shown
in Fig. 3a, where A = {0, 1, 2}, then the possible words of
length k = 2 are V (G2) = {00, 01, 02, 10, 11, 12, 20, 21, 22}
(Fig. 3b). One can verify that 00 is adjacent to 01, 10, and
11 but not adjacent to 12, 02, 21, 20, or 22. Similarly, 01 is
adjacent to 00, 02, 11, 10, and 12 but not to 20, 21, or 22.
By proceeding with the analysis, we arrive at the graph G2

shown in Fig. 3b. The largest stable set of G2 is represented
by the black vertices in Fig. 3b and contains 00, 02, 20, and
44, so α(G2) = 4. Thus there exist at most 4 words of length
k = 2 that can be transmitted without error in decoding.
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(a) Adjacency graph G of a
channel with 3 input sym-
bols.
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(b) Resulting graph G2 of the
strong product of k = 2 copies
of G.

Fig. 3: Example of a strong single-channel product with 3
input symbols.

As another example, consider a channel with the pentagon
adjacency graph G = C5 shown in Fig. 4a, the alphabet is
A = {0, 1, 2, 3, 4}, and each symbol i can be confused with
i−1 or i+1(mod 5). Vertex 00 is adjacent to vertices 01, 04,
10, 11, 14, 40, 41 and 44. Vertex 01 is adjacent to vertices 00,
02, 10, 11, 12, 40, 41 and 42. Following this procedure, we
obtain the graph G2 shown in Fig. 4b. The largest stable set
of G2 is composed of 00, 12, 24, 31, and 43, thus α(G2) ≥
5. Thus, only these 5 words of length 2 can be transmitted
without error.
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(a) Adjacency graph C5.
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Fig. 4: Example pentagon graph C5.

The zero-error capacity of the pentagon remained unknown
until Lovász [2] presented the function that is named after him.
This function corresponds to an upper bound for the zero-error
capacity and uses the so-called orthonormal representation of
the adjacency graph.

Definition 1 (Orthonormal Representation): Let
G = (V,E) be a adjacency graph on k vertices and let
i, j ∈ V be two vertices. The orthonormal representation of G
is the mapping of vertices onto unit vectors ui ∈ Rn, i ∈ V
such that

uTi uj =

{
0, if ij 6∈ E
ε, if ij ∈ E, ε > 0

(2)
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Definition 2 (Lovász Theta Function [2]):

ϑ(G) = min
c

max
1≤i≤k

1

(cTui)2
(3)

where c is a unit vector in Rk and ui is an orthonormal
representation of G in Rk.

By employing Definition 2, Lovász proved that the capac-
ity of the pentagon is exactly Θ(C5) =

√
5. Knuth [11]

demonstrated that α(G) ≤ ϑ(G) ≤ χ(G), where α(G) and
χ(G) both have NP-complete complexity. For perfect graphs,
ω(G) = χ(G), then α(G) = ϑ(G).

C. Partially Commutative Monoids

Let Σ be a finite alphabet and Σ∗ be the set of all finite
words formed by the elements of Σ, including the empty
word ε. The set Σ∗ is called the free monoid generated by
Σ. Furthermore, let Σn be the set of all words of length n
defined in the alphabet Σ. Throughout this paper, word and
sequence are used as synonyms.

Let G = (V,E) be an undirected simple graph called
commutativity graph. The elements of V are associated with a
finite alphabet Σ by means of a bijective function λ : V 7→ Σ
and we use Σ or V indistinctly if there is no risk of confusion.
If the vertices x, y ∈ V are adjacent they commute. Two
symbols x, y ∈ V commute when xy is equivalent in some
way to yx, represented by xy ≡G yx. If they do not commute,
the relation is represented by xy 6≡G yx. The complement
of the commutativity graph, G = (V,E), is called the non-
commutativity graph and it is a simple graph in which vertices
connected by an edge are associated with symbols that do not
commute.

Definition 3 (Partially Commutative Monoid): The
partially commutative monoid M(Σ, G) = Σ∗\ ≡G is
the quotient of the free monoid Σ∗ by the congruence relation
≡G.

Two words u,v ∈ Σ∗ are equivalent if one can be obtained
from the other by swapping the positions of the consecutive
symbols that commute according to ≡G. If two words are
equivalent, they belong to the same equivalence class and
are called congruent. A word u ∈ Σ∗ belongs to a class in
M(Σ, G), so, with some abuse of notation, one can say that
u ∈M(Σ, G).

Definition 4 (Equivalence Class): Let EG(u) be the set of
words equivalent to a word u ∈ M(Σ, G) according to the
relation ≡G. The set EG(u) is called the equivalence class of
u.

Definition 5: (Word Projection [12]) For any subset A of
the alphabet Σ and any word w defined in Σ∗, the projection
πA(w) of the word w into A is obtained by deleting from w
all symbols that are not present in A.

Theorem 2: (Perrin [12, p.330]) The necessary and suffi-
cient conditions for two words w,u to be congruent (i.e., to
be in the same equivalence class) is that they have the same
frequency of occurrence of symbols (the same type) and that
π{x,y}(w) = π{x,y}(u) for all symbols xy ∈ E.

The number τG(n) of equivalence classes of length n con-
sidering the relation ≡G corresponds to the number of words

ui, i = 1, 2, . . . , τG(n) defined in the monoidM(Σ, G) and of
length n that are pairwise non-congruent. Thus, representing
the subset of classes of the monoidM(Σ, G) that have length
n by Mn(Σ, G) = Σn\ ≡G, then

Mn(Σ, G) = EG(u1) ∪ EG(u2) ∪ · · · ∪ EG(uτG(n)), (4)

in which EG(ui) ∩ EG(uj) = ∅ for i 6= j, |ui| = n, i =
1, 2, . . . , τG(n) and τG(n) = |Mn(Σ, G)|.

Fisher [13], [14] developed methods for determining the
number τG(n) of equivalence classes of length n based on the
theory of partially commutative monoids presented by Cartier
and Foata [8]. The main tools for determining τG(n) are the
dependence polynomial of a commutativity graph G and the
monoid generating function [14].

Definition 6: (Dependence Polynomial [14]) The depen-
dence polynomial of the commutativity graph G is defined
by

D(G, z) =

ω∑
k=0

(−1)kckz
k, (5)

where ck denotes the number cliques of size k in the graph G
and ω is the clique number of G.

From the definition of dependence polynomial, it is also
useful to define the class of graphs that have the same
dependence polynomial.

Definition 7 (Dependence Class of a Graph): Let G be a
graph. The dependence class D(G) is formed by all graphs
G1, . . . , Gm that have the same dependence polynomial
D(G, z) as G.

The generating function ζM of the monoid M(Σ, G) can
be used to analyze the asymptotic behavior of the sequences
{τG(n)}n≥0.

Definition 8: (Monoid Generating Function) The generat-
ing function of a monoid M(Σ, G) is defined as

ζM(z) =

∞∑
n=0

τG(n)zn. (6)

It is possible to obtain an expression for τG(n) via the
dependence polynomial as presented in Corollary 1.

Corollary 1: [14, p.251] The generating function ζM(z)
can be obtained by

ζM(z)D(G, z) = 1. (7)

III. UPPER BOUND FOR CLASSICAL ZERO-ERROR
CAPACITY

Partially commutative monoids (PCM) were initially devel-
oped to analyze concurrent systems. The congruence relation
ab ≡G ba between two symbols a and b can be interpreted
as the equivalence relation arising from the permutation of
these symbols. In this context, the equivalence relation could
come from the representation of two events as a and b that
may occur concurrently in a given system. Furthermore, it
can also be understood as an invariance property of the system
outcome given that the operations ab or ba have been executed.
However, in the present paper, these interpretations of the PCM
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do not seem to be entirely suitable for application to the zero-
error theory.

Starting from the definition of the congruence relation
between two symbols as the possibility of confusion in the
channel, one can interpret the adjacency graph of the channel
as a commutativity graph. By developing this interpretation,
the definition of channel confusable words in an adjacency
graph Gn will be rewritten in terms of PCM.

Definition 9 (Confusable words): Let u = (u1, u2, . . . , un)
and v = (v1, v2, . . . , vn) be two words defined in Gn. The
word u and v are confusable if there exist a pair ui and vi
such that uivi ≡G viui.

By using the definition of confusable words, one can obtain
at the Lemma 1.

Lemma 1: If two words of length n are in the same
equivalence class of M(Σ, G), then they are confusable in
Gn.

Proof: Let be the word u = (u1, . . . , ui, ui+1, . . . , un).
Suppose that there exists at least a pair of congruent contigu-
ous symbols (i.e, uiui+1 ≡G ui+1ui), then swapping positions
of these symbols form a word u′ = (u1, . . . , ui+1, ui, . . . , un),
which is congruent to u considering G. By Definition 9, u and
u′ are also confusable.

From Lemma 1, it is possible to infer that an equivalence
class is formed by words that are confusable and have the same
type. If two words are confusable, they cannot be selected
to compose the non-confusable code-words. Note that words
in an equivalence class correspond to a subset of confusable
words, thus the maximum number of non-confusable words
of length n equals the number τG(n) of equivalence classes
according to the channel adjacency graph G. In general,
equivalence classes correspond to cliques (not necessarily
maximal) of Gn

Consider as a example the pentagon C5 and the graph C2
5

depicted in Fig. 5. The equivalence classes of length n = 2
defined in M(Σ, C5) are 00, 01 ≡ 10, 02, 03, 04 ≡ 40, 11,
12 ≡ 21, 13, 14, 20, 22, 23 ≡ 32, 24, 30, 31, 33, 34 ≡ 43,
41, 42, 44, forming 20 classes. One can see that the classes
represent clique on C2

5 . Since these clique are not necessarily
maximal, many confusable words do not belong to the same
class. For example, the words 22, 23, 32, 33 are confusable
with each other (they form a clique in C2

5 ). However these
words correspond to 3 distinct classes inM(Σ, C5), 22, 23 ≡
32, 33, because only 23 and 32 have the same type.
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Fig. 5: Adjacency graph C2
5 .

In order to obtain a bound for the zero-error capacity, it

is necessary to formalize the relations between the number of
equivalence classes and the independence number. Henceforth,
we define β(G) = lim

n→∞
τG(n)

1
n . The β(G) can be interpreted

as the growth factor of the monoid, since τG(n) ∼ β(G)n,
where β(G) corresponds to the smallest real root of multi-
plicity 1 of the dependence polynomial D(G, z) and f(n) ∼
g(n) means that lim

n→∞
f(n)
g(n) = 1. For more details, one can

consult [15].
Theorem 3: Let G be a adjacency graph, then

β(G) ≥ α(G), (8)

in which β(G) = lim
n→∞

τG(n)
1
n .

Proof: Let G be a graph and the number τG(n) of
equivalence classes of length n. It is known that each equiv-
alence class EG(ui), |ui| = n, corresponds to a clique in Gn.
The stable set is formed by vertices not connected pairwise
and cannot be formed using two vertices belonging to the
same clique. Thus, the independence number α(Gn) has as
its upper bound τG(n) ≥ α(Gn). Finally, using the fact that
α(G)n ≤ α(Gn), the desired result is obtained.

Theorem 4: Let Θ(G) be the zero-error capacity of a chan-
nel represented by an adjacency graph G, then

Θ(G) ≤
⌊
β(G)

⌋
. (9)

Proof: By the definition of zero-error capacity, it is
known Θ(G) = lim

n→∞
n
√
α(Gn) and, by Theorem 3, τG(n) ≥

α(Gn), then

Θ(G) = lim
n→∞

n
√
α(Gn) ≤ β(G). (10)

The independence number α(Gn) is always an integer, and
by using the floor function proprieties [16, cap.3], we obtain

α(Gn) ≤
⌊

n
√
τG(n)

⌋
≤ n
√
τG(n), (11)

which concludes the proof.

A. Examples

As a first example, we consider the case when G is a
complete graph, where τG(n) is given by

τG(n) =

(
k + n− 1

n

)
. (12)

It is known that for a complete graph (all symbols are
confusable) Θ(G) = 1 (see Theorem 1). Thus, by using (12)
in Theorem 4, we obtain that Θ(G) ≤ lim

n→∞
n
√
τG(n) ≤ 1.

Consider an empty graph (no symbol is confusable) of k
edges and τG(n) = kn. In this case, Θ(G) = k. By applying
now the Theorem 4, one has

Θ(G) ≤ lim
n→∞

n
√
τG(n) =

n√
kn = k. (13)

The pentagon C5 is considered as another example, where
τC5(n) ∼ 1

2

(
5 +
√

5
)
. For this graph, it is known that

Θ(C5) =
√

5 ≈ 2.23. Now applying Theorem 4,
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Θ(C5) ≤
⌊

lim
n→∞

n
√
τC5(n)

⌋
=

⌊
1

2

(
5 +
√

5
)⌋

= 3. (14)

The value obtained in (14) is larger than the upper bound
presented by Shannon [1],

√
5 ≤ Θ(G) ≤ 5

2 . The reason why
the bound obtained by using Theorem 4 is not tight in this
case is detailed in the next section.

In general, for cyclic graphs of k vertices and k edges the
number of equivalence classes of length n is given by

τCk
(n) ∼

(
1

2

(
k +
√
k − 4

√
k
))n

. (15)

By applying Theorem 4, it is obtained that

Θ(Ck) ≤
⌊

1

2

(
k +
√
k − 4

√
k
)⌋

. (16)

The Lovász ϑ function for cyclic graphs is known [16] and
is given by

ϑ(Ck) =

{
k cos (π/k)
1+cos (π/k) if k id odd
k
2 if k is even.

(17)

The comparison between the values of bβ(Ck)c and ϑ(Ck)
for cyclic graphs is illustrated in Fig. 6. As the k increases
bβ(Ck)c becomes about twice the value of ϑ(Ck). The values
bβ(Ck)c and ϑ(Ck) are equal only for k = 2.
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pp
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B
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nd

bβ(Ck)c
ϑ(Ck)

Fig. 6: Values of bβc and ϑ considering cyclic graphs of k
vertices.

B. Bounds Accuracy

The τG(n) is defined by employing the number of cliques
c0, c1, ..., cω of the adjacency graph. In this way, τG(n)
provides an upper bound for the entire dependence class
D(G). Without loss of generality, one can write the zero-
error capacities of graphs of the same dependence class as
Θ(G1) ≤ Θ(G2) ≤ · · · ≤ Θ(Gm). As an example, consider
the graph G from Fig. 7. This graph has c0 = 1, c1 = 5 and
c2 = 5, the same values as the pentagon C5. Thus, the bound
obtained in Eq. 14 is also valid for G. However, one can verify
that Θ(G) = 3, i.e., Θ(C5) ≤ Θ(G).

1

2

4

3

0

Fig. 7: Adjacency graph G of a channel with 5 input symbols.

The upper bound of Theorem 4 is tight on some graphs and
may even be equal to the zero-error capacity of the channel.
As an example, the graph of Fig. 7 has zero-error capacity

Θ(G) = 3 and bβ(G)c = 3, as can be verified in Eq. 14. The
equality is also the case for other small graphs. For cyclic
graphs, on the other hand, the bound is not tight because we
know that, in this case, β(G) ≥ ϑ(G) ≥ Θ(G).

In general, the bound accuracy for any graph is not known.
The accuracy ascertainment depends on difficult problems
such as the graph dependence class determination and the zero-
error capacity of each class element. More research needs to
be done in this direction.

IV. CONCLUSIONS

In this paper we presented a connection between classical
zero-error theory and partially commutative monoids and
provided an upper bound for the classical zero-error capacity.
The central finding of this study is that the zero-error capacity
is always less than the integer part of the monoid growth factor,
β(G). However, the computational complexity of counting
cliques of a graph makes it infeasible to determine the exact
β(G) when there are a large number of vertices and edges.

To further advance the research in this area, it is necessary to
investigate the tightness of the obtained bounds and explore the
relationships between these bounds and the Lovász function
ϑ(G). Furthermore, it would be relevant to practical uses
to investigate cases where the bound equals the zero-error
capacity.
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