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Low Complexity Algorithm for Antenna Selection
using Hierarchical Matching Pursuit
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Abstract— Massive MIMO systems have grown in popularity
due to the implementations of 5G and the prospect of 6G tech-
nologies. Massive MIMO enables more efficient use of spectrum
resources and larger data rates. When the number of antennas in
a base station increases, so do the energy consumption and hard-
ware cost. The high use of energy and processing can be managed
through antenna selection. Among the structures proposed in
the literature, this article presents hierarchical matching pursuit
algorithm for antenna selection (HMPAS) that uses a combination
of branch-and-bound with the matching pursuit antenna selection
algorithm. In our experiments, the proposed algorithm presented
considerable computational complexity reduction resulting in a
shorter running time than the benchmark algorithms, while
maintaining the error rate.

Keywords— Massive MIMO, antenna selection, matching pur-
suit

I. INTRODUCTION

Wireless systems based on multiple-input multiple-output
(MIMO) have become increasingly popular in recent years.
Massive MIMO arrangements are usually employed for better
data transmission, and for improving the spatial multiplexing
gain and the energy efficiency of the whole transmission
system [1]. Notwithstanding, emerging technologies have used
a millimeter wave range to achieve higher data throughput. On
the other hand, millimeter waves are more affected by path
loss effect, scattering, and penetration loss [2]. To overcome
this obstacle, the previous large antenna array can be used to
reduce the path loss or to increase the beam directionality.

When all the antennas are activated, the total energy spent in
the transmission is increased, with a higher spectral efficiency.
To save energy, a possible solution is to select a subset of
antennas to perform the transmission trying to maintain an
interesting spectral efficiency.

There are several potential architectures for building an
antenna array at the base station (BS). A fully connected
architecture is the simplest, but it is the most expensive one.
Each antenna of this type is connected to a radiofrequency
(RF) chain. Then, separate signals can be sent to each antenna.
A partially connected architecture is the second option. In
this case, several antenna sets are supplied by the same RF
chain. In the literature, most works discourse about the fully
connected architecture.
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The authors in [3] review some articles about antenna selec-
tion for multiple antennas in terms of size, power, and hard-
ware characteristics. The main methods presented are based on
spatial multiplexing and channel capacity. The work discusses
an exhaustive search, a channel-capacity-based method and a
norm-based selection. Finishing the review, a greedy method is
presented. The incremental selection algorithm starts selecting
a row vector representing the channel with the highest norm.
In each step, the residue of projection in this vector is
approximated on the orthogonal vector and chosen as the one
whose projection has the largest norm. The algorithm stops
when the L antennas are selected.

Other works discussed greedy algorithms. In [4], Mendonga
et al. use the matching pursuit based algorithm (named MPAS—
Matching Pursuit Antenna Selection) to select the antennas.
In this work the dictionary and the approximation vector for
matching pursuit were proposed.

A family of channel capacity based algorithms is also found
in the literature. The channel capacity is maximized using
convex optimization in [5]. Amadori et al. [6] suggest algo-
rithms in the same line-of-sight, maximizing the constructive
interference between the users.

From another point of view, bio-inspired methods are pre-
sented in the literature [7], [8], [9] to maximize the channel
capacity of selected antennas. Techniques such as Tabu search,
Quantum-inspired, Particle Swarm Optimization, Genetic Al-
gorithm, Artificial Bee Colony, and Hybrid Sea Lion-Whale
Algorithm were simulated in those articles. The focus of the
simulations is the computational cost.

Some authors suggest the reduced complexity architec-
ture [10]. A Radio-Frequency (RF) chain is connected in each
antenna in the fully connected architecture. In the reduced
complexity architecture, some antennas are connected in the
same RF chain. This architecture reduces the number of
possible choices in antenna selection but also reduces the
spectral efficiency.

Another way to reduce the complexity in the selection is
a method known as Branch-And-Bound (BAB) [11]. In this
method, a tree-based selection is used to reduce the number
of searches.

Lastly, some methods based on intelligent algorithms are
proposed in the literature. Chen et al. [12] show a Monte Carlo
Tree Search as an option to select antennas, whereas Abdullah
et al. [13] propose a grouping strategy.

We divide the article into the following sections: Section II
describes the background of Massive MIMO antenna selection,
the system modeling used, and the reduced system model
after the antenna selection. Moreover, the matching pursuit
antenna selection is introduced and its parameters are defined.
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Section III depicts our proposed method, the Hierarchical
Matching Pursuit Antenna Selection (HMPAS), and links it
to the traditional Matching Pursuit Antenna Selection algo-
rithm. This section ends with the pseudocode of the HMPAS
algorithm. Section IV shows the simulation results, as well
as the environment description in which the simulations were
performed. Finally, Section V presents our conclusion.

II. SYSTEM MODEL

Consider a downlink model in a single cell, M antennas
at the BS serve K terminals at the cover cell depicted by
the channel matrix G € CM*X_ The interference between
neighboring cells is not considered in this model. In other
words, their co-channel interference (CCI) in the interest cell

is not taken into account. For a signal message x € CM*1,
the received signal in each terminal is described by:
_ QT
y =G Px+w, (D

where w is defined as an additive Gaussian noise vector, and
P € CK*M j5 a precoding matrix. The precoding matrix has
the objective to reduce the channel effects at the sent message
x. A wireless channel suffers from multipath fading, which
generates time dispersion of the transmitted signal and, thus,
intersymbol interference. Moreover, some other impairment as
non-linearity of the channel is mitigated using a precoder.

When the entire set of available antennas is used, maximum
consumption of energy is achieved. Exploiting the redundancy
of spatial diversity of a massive MIMO antenna array, we
intend to reduce the entire set to .S selected antennas. These
antennas should maximize the channel capacity:

C = log, det(I — pGHdiag(z)G), )

where p is the energy spent in each antenna, z is a Boolean
vector, while 0 represents the unselected antenna and 1, the
selected antenna. Eliminating the unused antennas from the
full array, we can write the matrix of selected antennas Gg
as:

G = rem(diag(z)Q), 3)

where operator rem(-) is responsible to remove the null
columns formed in the multiplication operation.

Without loss of generality, we consider p = 1/K, with the
energy uniformly distributed among the selected antennas. The
whole system after the antenna selection can be expressed as:

y = GgPsX + w, (@Y)

where Pg represents the channel precoding.

Several criteria can be used to select the activated antennas.
For example, we can perform an exhaustive search over all
antennas to find the best combination of activated antennas to
maximize a channel capacity, as described in Equation (2), or
any other desired metric. An optimization of channel capacity
can be performed to find the vector z, which shows the
activated antennas.

Another exploited solution is based on sparse recovery.
The main idea in this approach is to create a sparse and
overcomplete dictionary and select the best antennas according

to that. Greedy algorithms seek to maximize the channel
capacity by performing the optimization on the following cost
function [4]:
minimize ||Dz — b)|3,
zec]\/f X1 (5)
subject to ||z||o = S.

The dictionary D and the approximation vector b are im-
portant variables in this application. They need to be carefully
chosen to represent the contribution of each antenna in the
entire system. In [4], the authors proposed the dictionary and
the approximation vector b as:

D— vec{p1p{'} vec{p2ps’} vec{pPmPr} (6)

b = vec(PTP) 7

where the operator vec(-) is responsible to resize its matrix
argument into a vector. In Equation (6), the columns p; are
the columns of precoder matrix P.

The literature also suggest other pairs of b and D. For
example, Gharavi-Alkhansari et al. [14] suggested the pair:

D=(Iy-G"G)™" (8)
b; =gj'g; ®)

where g; is the j-th collumn of the channel matrix G.

In this article, we use the pair b and D arranged in the
Equations (6) and (7) which achieves better performance in
terms of bit-error rate, as in [4],.

In Equations (6) and (7), the precoder matrix P referred to
zero-forcing precoding matrix [15], defined as:

Psr =G'
_ (G*é)—lé*7

(10)
(1)

where G is a estimation of the channel matrix G performed
by transmitter.

In this work, we use a zero-forcing precoder matrix as the
dictionary.

III. HIERARCHICAL MATCHING PURSUIT ANTENNA
SELECTION

Hierarchical Matching Pursuit (HMP) algorithms are an in-
teresting solution for the reduction of computational complex-
ity. The HMP converts the exhaustive search in a dictionary
for a tree-based search.

Matching Pursuit represents a vector b into components of
D = {di,...,dm}, where the dictionary is a sparse space.
We represent the vector b as a sum of projections:

b= Zaidi.

i€l

(12)

The set Z contains the indices which form the vector b
with projection in d; equals to a;. In other words, the set Z is
composed of all antenna indexes that form b.
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Hierarchical Matching Pursuit [16] starts with division of
the dictionary D into D;, j = 0,...,C where each D; € D.
In other words,

D=D,UDy-- - UD¢ (13)

where each D; is a small disjoint sparse subset of D. In
order to represent each subdictionary D;, we forms another
dictionary C = {c1,...,cc}, with the centroids of each
D;. The pair {c;,D;} will be formed using the K-means
algorithm [17].

Algorithm 1 Hierarchical Matching Pursuit Antenna Selection
1) Input: D, b, C
2) Performing the K-means into set of vectors D:

a) Select C points as centroids ci, co, ...
domly;
b) For each column vector d;, do:

, Cx ran-

i) Find the nearest centroid;
ii) Assign the point to cluster;
¢) For each cluster j = 1,...,K, do:
i) Compute the new centroids using the mean of
points assigned to that cluster;
d) Go back step (b) until convergence.
3) Initialize variables z <— Op7, @ < 1, j < 1 and (1) +
b
4) Forj=1toj=S5, do:
a) Find the closest centroid into cluster set C to r(j);
1) mazr_ip < —oo
ii) closest_centroid <+ 0 > Index of closest
centroid
iii) Fori=1to i = C, do:
o ip < (r(j).ci))
o If ip > max_ip, then:
- Max_ip < ip
— closest_centroid < i
e 1141
iV) SiZ@_D — Size(pclosestfcentroid)
b) Find the vector in the reduced dictionary D;
1) mazr_ip < —oo
ii) closest_vec < 0 > Index of closest vector in
D;
iii) For I =1 to l = size_D
o ip < (r(j),di(1))
o If ip > max_ip, then:
- Max_ip < ip
— closest_vec <1
iv) Map closest_vec in an index of D, idx
v) b(idz) =1

vi) 7(j+1) =7(j) — didx

We can divide the hierarchical matching pursuit into two
steps. The first one is to realize the first approximation in
the set C. After finding the best approximation in this set, we

will search in the associate dictionary D;. In this subset, we
will repeat the search and find the best approximation. Now,
we can link the chosen vector d; with the selected antenna.
Hierarchical Matching Pursuit Antenna Selection (HMPAS) is
described in the Algorithm 1.

IV. RESULTS
A. General Parameters

Intending to generate simulated results, some parameters
should be defined. The environment was defined with M =
256 antennas serving K = 16 terminals. We desire to select
S = 128 antennas from the total M. A Monte Carlo campaign
was performed with 1000 rounds to simulate the HMPAS in
contrast to MPAS. The sent data was encoded using Binary
Phase Shift-Keying (BPSK). A total of 200 bits, randomly
generated, were sent in each round. After the generation and
encoding, the data is sent in a Rayleigh channel imposed by
Gaussian noise varying the signal-to-noise ratio between -15
dB to 0 dB. The simulation result is analyzed by the bit
error rate (BER) average per user. To perform the HMPAS,
we defined the number of clusters ranging from 2 up to 32
clusters.

Furthermore, the channel needed to be estimated in the
transmitter to perform the zero-forcing precoding. So, in our
case, we used a perfect estimation in all simulations, without
loss of generality. This assumption does not prejudice the
results because all simulations are affected equally by an
imperfect Channel State Information (CSI). The time spent on
the channel estimation step is disregarded in the simulations.

In all simulations, the software Matlab was used to create
the simulation environment and the routines of HMPAS and
MPAS. The PC on which the results are obtained is an Intel
15-4460 CPU 3.20 GHz x 2 and 8 Gb of RAM.

B. Overall Quality results

Ideally, we would like to select a number S < M antennas
at which bit error rates are maintained or slightly affected.
Here, we will start with the MPAS as a benchmark of quality in
the transmission because the goal is to reduce the complexity
of this algorithm.

In Figure 1 is possible to notice the same BER average per
user for the MPAS and the versions of HMPAS with 2, 4, 8,
16, and 32 clusters.

C. Complexity analysis

Following the results achieved in [4], the number of flops
required to perform the MPAS with the ZF precoding is
%K3(1+L)+8M2K+8MSK2+MK2(6+8L)—|—SK2(6+
8L) —45?K? —3K?*(1+ L) +8MKL~+5. Where M, S, and
K were already defined before as the number of antennas,
the number of selected antennas, and the number of served
terminals, respectively. The variable L is the size of the block
message, here defined as 200 bits.

As also described in the same work, the number of flops
to create the dictionary is 6M K2, reminding the original
dictionary size is MK x M. The main loop of the MPAS
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Fig. 1. BER average per user plot for the MPAS and the HMPAS with

different number of clusters.

required the following number of flops 4 +2SK? —4S52K? +
4SK? + 8MK?2S.

Upon closer inspection, we can notice the direct dependency
of the number of columns in the dictionary (M K) with the
number of flops in the main loop. Actually, the dependency
of the dictionary size is also present in the total of flops with
another contributions as the generation of the residue r in each
step of the selection.

Here, we performed the K-means algorithm to split the
dictionary into minor dictionaries. The time complexity of this
algorithm [18] is equals to O(n?) where n is the number of
input patterns or, in other words, the size of input data. This
is a simplification of the complexity O(CTn), where C is the
number of clusters and 7' is the iterations needed to algorithm
converge. Considering 7" o< n, the effective cost, in flops, of
the K-means algorithm is Cn?.

To execute the HMPAS algorithm, we need to run the
K-means algorithm only once to split the dictionary. So,
the number of flops in this operation results in CM?2K?2.
Considering an average size of dictionary D equals to M K /C,
the number of flops of main loop as described as (4+2SK? —
42K + 4SK2 + 8MEZ§) L CMK(1 + MK).

Also, the total number of flops will be changed with this
approach. As the reduction in the number of flops is dependent
on the average size of the clusters, in this work we show
the reduction of number of flops using the time spent in the
simulation as described in the Figure 2.

Using the tested setup already described, the 8-HMPAS
achieved less then 1/3 of time spent compared with the
benchmark MPAS. The other configurations varying the num-
ber of clusters in HMPAS also reduce the time spent in the
simulation. We can also notice the dependency of number of
cluster in the time spent in this algorithm.

To demonstrate the efficiency of HMPAS to reduce the
temporal complexity, Figure 3 shows the variation between
1 to 256 clusters using the HMPAS algorithm compared to
MPAS. 1t is possible to note that there is a minimum time in
the HMPAS curve.

32-HMPAS
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B-HMPAS
4-HMPAS
Z-HMPAS
MPAS

0.2 0.6

t(s)

Fig. 2. Total time spent for different number of cluster compared to MPAS.
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Fig. 3. Variation of time spent in HMPAS with different numbers of clusters.

In order to find this minimum time, a comparison of the
total time spent in both algorithms can be performed. The
number of clusters that reduce the amount of time spent can
be expressed as:

1+MK)

a8 (141 5

C =
1+ MK

(14)

Using the described configuration, the minimum time is
achieved with C' = 30 clusters.

V. CONCLUSION

In this paper, we propose a low complexity algorithm for
antenna selection labeled as Hierarchical Matching Pursuit An-
tenna Selection (HMPAS) to apply in Massive MIMO systems.
The selection of antennas in the transmitter is responsible to
increase the beam directionality and this can also used for
energy saving.
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The main idea of this paper is reduced the search space
of the MPAS reducing the size of the dictionary with the K-
means clustering algorithm. The MPAS algorithm is executed
two times: the first one is to find the best correspondence to
the dictionary composed by the cluster vectors and the second
time applied in the reduced dictionary.

The proposed algorithm shown the BER results comparable
with the benchmark. Moreover, comparing the time complex-
ity, our algorithm shows a significant reduction of time spent.

At last, our work demonstrate the possibility to reduce the
total complexity of the MPAS algorithm reducing the sizes of
dictionaries without loss of performance. It is possible to apply
this algorithm with another types of clustering algorithms
as also with another greedy algorithms. This work can be
extended for another types of dictionaries (using the Gharavi-
Alkhansar [14] proposition, for example) or another types of
precoder.
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