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Middleton Class-A or Bernoulli-Gaussian: which
model to choose?
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Abstract— The performance of communication systems im-
paired by noise has been extensively and successively examined
under the assumption that the noise impairing the system
performance has a given probabilistic model. Specifying a model
for the noise is a matter still under investigation. Choosing a
good probabilistic model to represent the noise perturbing the
transmission, when samples of the noise are known, is a task of
high relevance when designing the communication system. Many
approaches to specify the model have been proposed. In this
paper, we assume that a sequence of samples, whether synthetic
(computer-generated) or natural (measured noise), is available
and compare three common modeling techniques, namely, the
Gaussian model, the Middleton Class-A model and the Bernoulli-
Gaussian model. Finding the process parameters is an easy task if
the noise randomness is well described by a Memoryless Gaussian
process (this is in fact a single parameter model). Although this
model is easy to specify, it represents the most difficult channel
through which one could conceive transmitting information. The
specifications of two other models (non-Gaussian models) are
discussed in this paper. The choice of a good model is also
discussed. The ideas presented provide guidance to choose a
good model (better matched to the true noise) based on the
performance of LDPC coded transmission over BPSK systems.

Keywords— Bernoulli-Gaussian channel, Channel mismatch,
Impulsive noise, LPDC, Middleton Class-A channel.

I. INTRODUCTION

This paper examines the problem of choosing a probabilistic
model to represent a noise known through a sequence of
samples. Three memoryless noise models will be considered,
namely the Gaussian (G), the Bernoulli-Gaussian (BG), and
the Middleton Class-A (MDD) stochastic processes. The math-
ematical description of these models is well known. Theses
descriptions are discussed in detail in [1]. We emphasize, at
this point, that while the memoryless Gaussian process is fully
specified by choosing a single parameter (σ0, the standard
deviation of a Gaussian probability density function), the other
two models description is more sophisticated and are based
on three parameters. The BG stochastic process specification
relies on two probability density functions specified by the
standard deviations σ0 and σ1, of two Gaussians and on a third
parameter (probability) specified by p1. The stochastic process
description corresponding to the MDD model is based on an
infinite sequence of Gaussians probability density functions,
all with standard deviation depending on a pair of parameters,
(σ0,Γ), and on an infinite sequence of probabilities (p′ℓ,
ℓ an integer index) taken from a Poisson distribution with
parameter A.
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This paper does not focus on direct “parameter estimation”
but on “moments estimation” which, once obtained, are then
used to calculate the parameters.

Calculating the parameters of a memoryless Gaussian
model, given that a sequence of samples of the noise is
known, is a simple matter. The usual approach amounts to
estimating the variance (assumed to be well approximated by
the average value of the squared samples) which characterizes
the probability density function. The variance of a Gaussian
random variable (assumed to be zero mean) is the sole
parameter specifying the process1 and once the variance is
estimated the sought parameter is obtained. In all cases the
stochastic process modeling the noise will be represented by
the infinite sequence of random variables {Zi} (i is an integer
index belonging to the integer set Z).

The parameters of a BG process can also be easily calcu-
lated once the 1st, 2nd and 3rd moments (respectively Ê[|Z|],
Ê[|Z|2] and Ê[|Z|3]) of the absolute value of the r.v. Zi of
the BG-process are estimated. We use a recent published
result by Finamore et alli [1] which introduces the solution to
the problem of calculating the parameters of the BG-process
which model the noise given that a finite sequence of N noise
samples, say [z1, . . . , zn, . . . , zN ], is known. The solution to
the problem of calculating the parameters of the MDD-process
by using estimated values Ê[Z2], Ê[Z4] and Ê[Z6] as proposed
by Middleton [2] is also used. The results are discussed in
Section III.

The model of the transmission medium, obtained from a
sequence of available samples, is examined with Information
Theory tools in order to assess the achievement of transmission
at the highest possible rate (near the calculated capacity of the
model).

Our findings are simple but the results are, besides original,
of interest to many readers. They are particular useful to those
dealing with communications over Power Line Communica-
tions or Sonar Communications [4], [5].

The reader should be attentive to the fact that finding
the parameters of the stochastic process that mathematically
represent the noise is not a guarantee that the chosen model is
the best representation of the random phenomenon (noise).
If the assumption that the noise has a Bernoulli-Gaussian
behavior is true then the three estimated moments Ê[|Z|ℓ],
ℓ ∈ {1, 2, 3} are all one needs to specify the stochastic process
(all other moments estimate are, supposedly, close to their
respective expected values E[|Z|ℓ], ℓ a positive integer). If
this assumption is not met a discrepancy between the true

1As it is well known a memoryless Gaussian stochastic process {Zi} is
fully specified by a unique Gaussian probability density function with variance
σ2
Z .
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Cumulative Distribution Function (C.D.F.) and the empirical
C.D.F. will exist (even if an optimal technique is employed
to estimate the three moments). When choosing between two
models the one with higher capacity2 would be preferable.
This approach can be justified by a recent result [6] which
states that under channel mismatch decoding (not using the
true likelihood function) the “mismatched capacity” is an
upper bound to the maximum achievable transmission rate.
We conjecture thus that a decoder designed with the less
mismatched channel/model can produce a better probability of
error performance and would thus be preferred. Our research
aims at “quantifying the loss from choosing an ill set up
model.” It is a very simple (and obvious) idea but which has
been ofttimes neglected. Our results quantifies how harmful it
is to neglect information theory notions.

This work is organized as follows. Section II presents the
three models used to describe the channel. The methods used
to calculate the parameters of the models are detailed in
Section III-C. Some comments on the choice of the model are
posted in Section IV. The results of the work are presented in
Section V, and the conclusion closes the paper in Section VI.

II. PROBLEM FORMULATION

Our results are set up using the well established assump-
tion to describe mathematically the communication system: a
sequence of samples {xi} (the index i is an integer usually
identifying a time instant), is sent through a transmission
medium perturbed by additive noise. To each channel input xi

belonging to the real set R there corresponds thus a channel
output yi = xi+zi such that a sequence of real samples {yi},
which is the addition of the value xi to a noise component
zi ∈ R is delivered at the destination. In our investigation
three models (three stochastic processes) are used to describe
the random behavior of the perturbing noise {zi}.

A. Gaussian Model

The Gaussian model (which specifies what is called the
Gaussian Channel) considers that the noise sequence {zi} =

σ0{r[0]i } is modeled as the Stoc. Proc. {Zi} = σ0{R[0]
i }

in which {R[0]
i } is a collection of i.i.d. zero mean, unity

variance random variables such that fZi
(z) the probability

density function of all the random variables Zi are given by
the same function

fZ(z) =
1

σ0

√
(2π)

exp

(
− z2

2σ0

)
(1)

B. Bernoulli-Gaussian Model

The BG model (which specifies the BG Channel) considers
that the noise sequence is mathematically represented by
{z̃i} = σ0{r[0]i } + σ1{s[1]i r

[1]
i }. A particular noise sample z̃i

is viewed as the manifestation of a perturbation which is the
addition of the background noise σ0{r[0]i }, always present,
and an impulsive component which is absent when the state

2The capacity is a property of the model—to every noise probability density
function there corresponds a channel capacity

variable value is s[1]i = 0 or present when the value of the state
variable is s

[1]
i = 1 (the process is said to be, in this case,

in the impulsive state). The state is modeled as a Bernoulli
random variable S

[1]
i with Prob{S[1]

i = 1} = p1 which do
not change with the time index i. In the first case z̃i =

σ0r
[0]
i is the ubiquitous thermal noise modeled as a Gaussian

random variable Z̃i = σ0R
[0]
i and, when si = 1 the sample

values are expressed as z̃i = σ0r
[0]
i + σ1r

[1]
i , the addition

of the always present background noise plus an intermittent
component sir

[1]
i . The values (σ0, σ1, p1) constitute the triple

of parameters of interest. The noise which is modeled by
the stochastic process Z̃i = σ0{R[0]

i } + σ1{SiR
[1]
i } is fully

characterized [1] by the probability density function

fZ̃(z) =
1− p1

σ0

√
2π

exp

(
− z2

2σ2
0

)
+

+
p1√

2π(σ2
0 + σ2

1)
exp

(
− z2

2(σ2
0 + σ2

1)

)
(2)

(for every i we have fZ̃i
= fZ̃).

C. Middleton Class-A Model

A well known probabilisitic model for impulsive noise,
proposed by Middleton [2], the three parameter model that
can be written as

Ži =

∞∑
θ=0

σθ R
[θ]
i I{Si = θ}, (3)

with the channel states running over an infinite set, namely,
θ ∈ {0, 1, . . . ,∞}, and where I represents the indicator
function. Middleton model [8] imposes also that Poisson be
the probability law which is to rule the probability pθ =
Prob{Si = θ} or, specifically,

pθ =
Aθ

θ!
e−A.

In this case, it should be noticed, the probability of observing
a noise sample in the background state is p0 = e−A. The
power of the sequence of samples in state θ, (θ > 0) can be
expressed through

σ2
θ = σ2

0

(
1 +

θ

AΓ

)
, (4)

where σ2
0 is the power of the background noise, and Γ is a

power ratio, given by Γ =
σ2
0

σ2
I

, σ2
I = σ2

Ž
− σ2

0 .
The probability density function of the random variable Ž

is,

fŽ(ζ) =
∞∑
θ=0

pθ

(
1

σθ

√
2π

e−ζ2/2σ2
θ

)
.

Since σ2
Ž
=

∑∞
θ=0 pθσ

2
θ one need thus, to specify the process,

just to know the three parameters, A, σ0, and σŽ (or Γ).
Techniques to estimate the parameters of the Middleton
Model have been presented in [2].

The Middleton model yet admitting that the noise goes
through a very large number of states is however a model
which, restricts the states to obey a Poisson distribution and
depends on only three parameters.
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III. CALCULATING THE PARAMETERS OF EACH MODEL

Let us say that a block of Ns noise samples
[z1, . . . , zn, . . . , zNs

] has been provided. The ℓ-th moment,
v.i.z., E[|Z|ℓ] of the stochastic process {Zi} (considered to be
stationary and ergodic) is estimated by a value Mℓ = Ê[|Z|ℓ]
given by

Mℓ =
1

Ns

Ns∑
n=1

|zn|ℓ. (5)

Without loss of generality we will assume that the samples
[z1, . . . , zn, . . . , zNs ] have been normalized such that M2 = 1.
The parameters associated to each model are thus calculated
as follows.

A. Gaussian model parameters

The estimated parameter σ̂0 specifying the G-model, as it
is well known, is given by σ̂0 = M2 = 1.

B. Bernoulli-Gaussian model parameters

Using the results in [1] and considering that the estimated
moments M1, M3 (with, of course M2 = 1) are known, the
parameters specifying the BG-model, namely σ0, σ1, p1, can
be obtained by first finding the largest root ξ of the equation

α2 − (κ− 2)α+ 1 = 0, (6)

in which κ is defined as

κ =:

(
M3

√
π/8−M1

√
π/2

)2

(M1M3π/4− 1) (1−M2
1π/2)

. (7)

If the first three moments estimation fall in the BG-process
feasible region (i.e., they obey the conditions M1 > 4

π
1

M3
and

M1 <
√

π
2 ) then the three parameters can be computed by

using the relations

σ0 =
M3

√
π/8−M1

√
π/2

(1−M2
1

√
π
2 )(ξ + 1)

, (8)

σ1 = σ0

√
ξ2 − 1, and (9)

p1 =
1− σ2

0

σ2
1

. (10)

If the estimated moments fall outside the feasible region the
designer should be aware that no BG-process with such values
do exist. The BG process obtained by replacing the estimated
moments by new values, within the feasible region, close to
the current moments can however produce a BG-process which
can be used as a model.

C. Middleton Class-A model parameters

As shown in [2], the three parameters of the Middleton
Class A model can be obtained from M2, M4, and M6.
The mathematical deduction presented below shows how the
parameters can be calculated. Given the state Si = θ, the
moments are given by the Gaussian results [3], that is,

E[Ž2
i |Si = θ] = σ2

θ ,

E[Ž4
i |Si = θ] = 3σ4

θ , and
E[Ž6

i |Si = θ] = 15σ6
θ .

Using (4) in the above equations, and applying the total
probability rule for expected value, it can be shown that

E[Ž2
i ] = σ2

0

(
1 + Γ−1

)
,

E[Ž4
i ] = 3σ4

0

(
1 + 2Γ−1 + Γ−2 + Γ−2A−1

)
, and

E[Ž6
i ] = 15σ6

0

(
1 + 3Γ−1 + 3Γ−2 + 3Γ−2A−1+

+Γ−3 + 3Γ−3A−1 + Γ−3A−2
)
.

The above results were reached using also expressions for the
first, the second and the third moments of a Poisson random
variable [3]. These three equations form a non linear system
which can be solved mathematically. Replacing the moments
by their estimated values and considering that M2 = 1, the
parameters are given by

Γ =

(
M6

15 − 1
)
− 3

(
M4

3 − 1
)(

M4

3 − 1
)2 − 1, (11)

σ0 =

√
1

1 + Γ−1
, and (12)

A =
σ4
0Γ

−2

M4

3 − 1
(13)

As in the Bernoulli-Gaussian case, the Middleton class A
model has also a feasible region for their moments (which
is given by M4 > 3 and M6

15 >
M2

4

9 + M4

3 − 1). Therefore, if
the estimated moments fall outside this reagion, no Middleton
process with such values do exist. In this case, the model can
also be used using new values close to those estimated.

IV. CHOOSING A MODEL

The bulk of results on “transmission over non-Gaussian
channels” focus on discussing “proposed models”, “estimating
the parameters of proposed models”, and “calculating the
capacity of the correspondent channels” but do not address the
problem of choosing a good model (check the recent survey by
T. Bai et alli [8] and references therein). Finding the parame-
ters of a stochastic process which model the noise perturbing
the transmission medium does not guarantee that such a model
is the best choice. Many written papers addressing the subject
of reaching channel capacity neglects the fact that that channel
capacity limits the optimum transmission rate only if one is
using the proper model. This is crucial point emphasized in
our manuscript—it sounds like a trivial statement but it is, in
many cases, an often misunderstood fact.

An analysis addressing this issue is presented next. In our
experiments we examine the performance of systems which
transmit LPDC encoded information over a binary input chan-
nel impaired by additive noise. This analysis, which follows
a practical approach, can indicate (as shown by our results)
which model is subject to the worst mismatch between the
theoretical and simulated performance.

V. EXPERIMENTAL RESULTS (SIMULATIONS)
To clearly understand the benefits of choosing the right

model the performance of three types of noise were ex-
amined. Three sequences of noise samples (16M sam-
ples) synthetically generated were examined. The first se-
quence (NoiseSeq01-BGsamples) bears the characteristics of



XLI BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2023, OCTOBER 08–11, 2023, SÃO JOSÉ DOS CAMPOS, SP

a BG-process. The pseudo-random behavior of the second
(NoiseSeq02-MDDsamples) sequence is ruled by the charac-
teristics of a MDD-process. The nature of the randomness
of the third sequence (NoiseSeq03-gBGsamples) bears the
characteristics of a process with five states each of them adding
an independent impulsive gaussian component with arbitrary
power. This third sequence is called a generalized Bernoulli-
Gaussian noise (gBG-noise, in short).

Figure 1 exhibits the performance of the communication
system when NoiseSeq01-BGsamples is the sequence of noise
samples used (which corresponds to samples of noise synthet-
ically generated by using the probability density function of a
BG stochastic process).

-2 -1 0 1 2 3

SNR (dB)

10 -5

10 -4

10 -3

10 -2

BER

Decoder using Gaussian model
Decoder using BG model
Decoder using Middleton model

Fig. 1. Noise sequence (NoiseSeq01-BGsamples) generated with parameters(
E[|Z|],E[|Z|2],E[|Z|3]

)
= (0.60, 1.00, 3.00) or yet (σ0, σ1, p1) =

(0.4421, 2.1082, 0.1811). The estimated parameters under the assumption
that these are noise samples taken from a BG-process are

(
σ̂0, σ̂1, p̂1

)
=

(0.4417, 2.1071, 0.1813). The estimated parameters under the assumption
that these are samples taken from a noise random behavior is modeled as a
MDD-process are

(
σ̂0, Â, Γ̂

)
= (0.1807, 0, 3199, 0.0338).

As it can be observed the system performance of both BG
and Middleton models are better than the performance when
the receiver is built under the assumption that the noise is
purely Gaussian. It can also be observed that both BG and
MDD exhibit quite similar performance. In fact, the LDPC
decoders designed with the Log-Likelihood-Ratio (LLR) based
on these models can lead to improvements over 4 dB when
compared to the LDPC decoder opperating with the Gaussian
LLR.

For this first sequence, it is also important to mention that
the estimated moments fell outside the feasible region of the
Middleton model. Figure 2 illustrates the position of the pair
(M4,M6) and compares it with the validity region. Therefore,
the performance of the decoder based on the Middleton model,
shown in Figure 1, was obtained with values close to those
estimated. It is interesting to observe that even with a small
adjustment in the estimated values, the results of the MDD
model are close to the correcto model (BG-noise). In fact, in
the simulations, small deviations in the estimated moments
did not lead to significant changes in performance. Therefore,
chossing a good model seems to be more important than using
an optimal estimator.

Figure 3 exhibits the performance of another system: a
system in which the transmission is perturbed by MDD-noise
(NoiseSeq02-MDDsamples corresponds to samples of noise
synthetically generated by using a 10 states probability density

0 0.5 1 1.5 2 2.5 3 3.5 4
0

4

8

12

16

20

M4
3

M6
15

M4 = 3

M6
15

=
M2

4
9

M2
4 +

M4
3

− 1

Fig. 2. The red star shows the position of the pair (M4,M6), falling outside
the feasible region

function of a MDD stochasticv process). For this second
sequence, the estimated moments fell within the feasible
regions of the two models (BG and MDD).

SNR (dB)
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Decoder using Gaussian model
Decoder using BG model
Decoder using Middleton model

Fig. 3. Noise sequence (NoiseSeq02-MDDsamples) was generated by
taking p1 = 0.20 and Γ = 0.19 (and, of course σZ = 1.00)
which rendered the parameter A = 1.6094. The estimated parame-
ters under the assumption that these are samples of a BG-process are(
σ̂0, σ̂1, p̂1

)
= (0.5837, 1.1369, 0.5101). The estimated moment under the

assumption that these are samples of a MDD-process are
(
σ̂0, Â, Γ̂

)
=

(0.3786, 1.6772, 0.1673).

Again it can be observed that the system performance of
both BG and MDD models are better than the performance
when the receiver is built under the assumption that the noise
is purely Gaussian. It can be also noticed that both BG and
MDD models have quite similar performances, even though, in
this case, they are close to the results achieved by the decoder
based on the Gaussian model. It is important to mention that
this similarity with the result of the Gaussian model depends
on the parametes of the model used. Actually, for the BG
model, it would also be possible to achieve similar results for
the three models, by adjusting the parameters. Analogously,
we believe that the choice of distinct parameters for the MDD
model can also deviate the curve of the Gaussian model.

Finally, Figure 4 exhibits the performance of a system
in which the transmission is perturbed by a gBG-noise
(NoiseSeq03-gBGsamples corresponding to samples of noise
synthetically generated by using the probability density func-
tion of gBG stochastic process, which corresponds to the
mixture of 5 Gaussians random variables with the background
variance equal to σ0 = 1.0 (state 0) and states variances σi are
equal to 2.0,

√
2.0,

√
3.0 and 4.0 for i respectively equal to 1,

2, 3, and 4). Also in this third case, the estimated moments
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fell within the feasible regions of the models.

SNR (dB)

BER
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Decoder using Gaussian model
Decoder using BG model
Decoder using Middleton model

Fig. 4. Noise sequence (NoiseSeq03-gBGsamples) was generated by mixing
five Gaussian random variables. During 88 percent of the time the noise is
purely Gaussian (is in the background state). As for the other states we have
used (p1, p2, p3, p4) = (0.032, 0.064, 0.016, 0.008). The selected variances
are, respectively, (σ0, σ1, σ2, σ3, σ4) = (1, 2,

√
2,

√
3, 4). The estimated

parameters under the assumption that these are samples from a BG-process
are

(
σ̂0, σ̂1, p̂1

)
= (0.9055, 2.5651, 0.0174). The estimated moment under

the assumption that these are samples of a MDD-process are
(
σ̂0, Â, Γ̂

)
=

(0.9321, 0.0139, 6.6242).

Notice that, once more, the system performance of both BG
and MDD models are better than the performance of a receiver
built under the assumption that the noise is purely Gaussian. It
can be also noticed that both BG and MDD have a quite similar
performance. Choosing to model the noise with either as a
Bernoulli-Gaussian stochastic process or a Middleton would
lead to a better design.

VI. CONCLUSION

We have examined the problem of choosing a good proba-
bilistic model to represent the noise perturbing the commu-
nication over a transmission medium when samples of the
noise are known. The performance of communication systems
impaired by noise has been extensively and successively
examined under the assumption that the noise impairing the
system performance has a given probabilistic model. In the
current paper we target the more ambitious task of choosing a
probabilistic model which better match the random behavior of
the noise. The optimum decoder under mismatched condition
is a theoretical subject of current interest which has received
recent attention [6], [7]. The ideas presented in our paper
provide practical guidance to choose a good model (better
matched to the true noise) based on the examination of the
performance of LDPC coded transmission over BPSK systems.

A relevant task is to find the parameters of the model.
Three common modeling techniques, namely, the Gaussian
model (characterized by the parameter σ2

0—Gaussian noise
power), the Bernoulli-Gaussian (σ2

0—background Gaussian
noise power, σ2

1—impulsive noise power, p1—probability of
being in the impulsive state) and Middleton Class-A model (σ2

0

and parameters A and Γ) were examined. Many approaches
to specify these models parameters have been proposed in the
literature [8]. We have chosen to specify the parameters by
calculating their exact values under the assumption that exact
values of the expected values of the process are known. This
is, of course, a theoretical assumption: in practice the expected
values are never known, the “estimated expected values” thus,

and only the estimates, can be obtained. In the current paper
we took synthetically generated noise samples to evaluate the
performance of the LDPC coded transmission over BPSK. The
results have shown that the use of the Gaussian model can
produce a loss above 4 dB, if the channel adds impulsive noise.
The simulation results also showed that BG and MDD models
render systems with similar performance for different kinds of
impulsive noise. However, since the MDD model leads to a
more complex implementation due to multiple states, the BG
model can be considered a good choice.

Finally, we conjecture that there are many advantages from
using these results. We anticipate that this would facilitate the
development of adaptive receivers, assist in discovering effi-
cient methods for transmission over a non-Gaussian channel,
and pave the way for investigating the potential gains from
using models that incorporate possible noise memory.
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