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Quantum Classifiers applied to Multi-User Detector
in Communications Systems

João T. Dias, Demerson N. Gonçalves, Felipe A. Silva and Daniel C. Neves

Abstract— In this paper we implement two quantum ma-
chine learning (QML) algorithms, namely, quantum kernel-
based classifier (QKC) and variational quantum classifier (VQC),
considering different types of encoding functions. We compare
its performance to that of its classical counterpart, the classical
support vector machine (SVM) applied to the detector in a multi-
user - direct sequence - code division multiple access (MU-DS-
CDMA) system, with a scenario where the user code generates
non-linearities as a function of the channel delay profile. The
results explicitly prove accuracy advantage achieved by our
quantum classifiers on three types of datasets. This work shows
that quantum classifiers have a huge potential to be useful in
the future as the number of qubits in the quantum computer
increases.

Keywords— Quantum classifiers; MU-DS-CDMA; Multi-User
Detection.

I. INTRODUCTION

High spectral efficiency, massive connectivity and low la-
tency are among the requirements for next-generation com-
munications systems, and these requirements are expected
to increase as researchers focus their efforts on sixth-
generation (6G) wireless communications. Massive multiple-
input multiple-output (M-MIMO), non-orthogonal multiple
access (NOMA) and millimeter wave (mmWave) commu-
nications are promising techniques to meet these stringent
requirements [1].

Supporting a large number of users communicating over a
common channel may not be readily achievable by orthogonal
multiple access (OMA) systems due to multiple access inter-
ference (MAI). It is widely known that the complexity of an
optimal detector is exponentially proportional to the number
of users, which prevents its practical implementation. Several
sub optimal low-complexity detection techniques have already
been proposed [2].

Recently, several NOMA solutions have been actively in-
vestigated [1], which can basically be divided into two main
categories, namely, power-domain NOMA and code-domain
NOMA. Some of NOMA’s strong competitors in the code do-
main are low-density spreading-aided CDMA (LDS-CDMA)
[3] and sparse code multiple access (SCMA) [4].

In parallel with the development of telecommunications
systems, quantum computing has been developing and proving
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to be capable of solving problems considered prohibitive due
to its computational complexity [5], [6]. Quantum computing
is a computational paradigm based on the laws of quantum
mechanics, which promises to solve problems that would take
classical computing too long to compute due to the size of
the data set or the computational power required. In QML,
many quantum algorithms are developed by adapting classical
algorithms or their expensive subroutines to run on a potential
quantum computer. There are many algorithms of QML such
as solving linear systems of equations, principal component
analysis (QPCA) and support vector machines [7].

This work is motivated to show that a solution to the
problem of an optimal detector complexity can be obtained
by using quantum algorithms. For this, some QML algorithms
such as QKC and VQC were studied and the performance
of a multi-user detector based on QML in a MU-DS-CDMA
system was analyzed with a scenario where the user code
generates non-linearities as a function of the delay profile of
the channel. The results showed the viability of the proposed
solution and contribute to a new approach in the quest to meet
the requirements of future communication systems.

This work is organized as follows: the Theory Fundamen-
tals are described in section II, The quantum classifiers are
presented in section III. In section IV, the simulation results
are presented, and conclusions are made in section V.

II. THEORY FUNDAMENTALS

A. MU-DS-CDMA system model
The model of MU-DS-CDMA used in this work is depicted

in Fig. 1 [8].

Fig. 1. Structure of MU-DS-CDMA System.

The value bi(k) ∈ {±1} denotes the kth bit of user i, N
is the number of users, M is the length of the user code and
Si(z) ∈ {±1} is the z-th element of the user signature. The
received signal r(k) is given by

r(k) = P
[
b(k) . . . b(k − L+ 1)

]T
+ S̄Tn(k), (1)

where S̄ = [s̄1 · · · s̄N ] is the normalised user signature se-
quence matrix, n is the additive white Gaussian noise vector
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and the N×LN system matrix P = S̄TH diag(S̄A, . . . , S̄A),
where A is the diagonal user signal amplitude matrix and
HM×LM is the channel impulse response matrix (CIR). The
intersymbol interference span L depends on the length of
the CIR, nh, related to the length of the chip sequence M .
For nh = 1, L = 1; for 1 < nh ≤ M,L = 2; for
M < nh ≤ 2M,L = 3, and so on.

B. SVM detector

Support Vector Machine (SVM) is a supervised Machine
Learning (ML) technique that can be used for classification
tasks [9]. Let {(xj , yj)}Cj=1 be a linearly separable dataset,
where C is the size of the training dataset with data dimension
D and yj = ±1, i.e., yj = 1 or yj = −1 depending on
the class to which xj belongs (binary classification). SVM
finds the optimum hyperplane with parameters (w, ϱ) that
divides the two classes, i.e., datapoints with labels yj = 1
that satisfies yj(w · xj + ϱ) ≥ 1 and datapoints with labels
yj = −1 satisfying yj(w · xj + ϱ) ≤ −1. In addition, the
boundary of the decision regions 2

∥w∥ is maximized. Then,
the decision function is given by f(x) = sign (w∗ · xj + ϱ∗),
where w∗ and ϱ∗ are the optimal values obtained from the
optimization procedure. In the dual formulation, the goal is
to maximizing

∑C
j=1 yjφj − 1

2

∑C
j,c=1 φjK(xj,xc)φc, where

φ are the Lagrange multipliers, subject to the constraints∑C
j=1 φj = 0 and yjφj ≥ 0. Hence, the parameters (w∗, ϱ∗)

can be recovered as w∗ =
∑C

j=1 φ
∗
jxj and ϱ∗ = yc −w∗ ·xc

for an index c corresponding to φ∗
c ̸= 0. The function

K(xj,xc) = xj · xc is called kernel function and can also
be defined for a more complicated non-linear dataset [10].
Putting values w∗ and ϱ∗ into the decision function f , we
obtain a binary classifier for new data x:

f(x) = sign

 C∑
j=1

w∗K(xj,x) + ϱ∗

 . (2)

Suppose that the receiver MU-DS-CDMA has access to
a block of K training samples {r(k), bi(k)}Kk=1. The SVM
multi-user detector (SVM MUD) can be designed for each
user i by applying the standard SVM to set of noisy received
signal [11]:

fSVM(k, i) =

K∑
j=1

φ∗
j bi(j)K(r(k), r(j)) + ϱ∗, (3)

and making the decision of user i data with b̂i(k) =
sign(fSVM(k, i)).

C. Fundamentals of quantum computing

Quantum computing is a model of computation that exploits
quantum mechanical phenomena to perform high speed paral-
lel computing [12]. Classical information in digital computers
is represented by logical binary digits (bits). A logical bit
can take the value of 1 or 0 depending on whether the
voltage in the wire is High or Low in a logic circuit. In
contrast, the smallest unit of information stored in a two-state
quantum computer, called a quantum bit or qubit, is a unit

vector in the two-dimensional complex Hilbert space (C2) for
which a particular orthogonal basis {|0⟩ , |1⟩} has been fixed.
The quantum state of a qubit can be represented using any
chosen orthogonal basis. The most commonly used basis is the
computational basis, which corresponds to |0⟩ = [1, 0]T and
|1⟩ = [0, 1]T . Unlike the classical bit, a qubit can be in a linear
superposition of |0⟩ and |1⟩, that is, |ψ⟩ = α |0⟩ + β |1⟩ =
[α, β]T where α, β ∈ C are the amplitudes of |ψ⟩ on the
computational basis with the constraint |α|2+ |β|2 = 1. When
α = 1, then β = 0 and hence |ψ⟩ = |0⟩, which corresponds to
the classical bit value 0. Similarly, if α = 0, then β = 1 and
|ψ⟩ = |1⟩, which corresponds to the classical bit value 1. In
general, when a state of one qubit |ψ⟩ is measured with respect
to the computational basis, the probability that the measured
value is |0⟩ is |α|2 and the probability that the measured value
is |1⟩ is |β|2.

The state of a quantum computer can be changed by
applying unitary operators or quantum gates to its qubits. One
of the most widely used single-qubit unitary operator is the

Hadamard gate, given by H = 1√
2

[
1 1
1 −1

]
. One can easily

check that H |0⟩ = |0⟩+|1⟩√
2

and H |1⟩ = |0⟩−|1⟩√
2

. If the input is
|0⟩, the Hadamard gate creates a superposition of states with
equal weights. Another important set of single-qubit gates is
the Pauli matrices,

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (4)

The gate X is the quantum NOT gate because X |ψ⟩ = β |0⟩+
α |1⟩. The Z operator is the gate imposing a phase shift by π
radians, since it flips the sign of the amplitude of the state |1⟩,
Z |ψ⟩ = α |0⟩ − β |1⟩. The operator Y can be considered as a
combination of X and Z gates, because Y |ψ⟩ = i(−β |0⟩ +
α |1⟩).

In order to increase the complexity of a quantum system, a
most general 1-qubit gate can be used,

U(θ, ϕ, λ) =

[
cos( θ2 ) −eiλ sin( θ2 )

eiλ sin( θ2 ) ei(λ+ϕ) cos( θ2 )

]
. (5)

For instances, three useful gates obtained from U are

U(θ,
π

2
,−π

2
) = Rx(θ) =

[
cos( θ2 ) −i sin( θ2 )

−i sin( θ2 ) cos( θ2 )

]
, (6)

U(θ, 0, 0) = Ry(θ) =

[
cos( θ2 ) − sin( θ2 )
sin( θ2 ) cos( θ2 )

]
, (7)

U(0, 0, λ) = e
iλ
2 Rz(λ) =

[
1 0
0 eiλ

]
, (8)

where Rx, Ry and Rz are the operators that rotate the Bloch
sphere [12] about the x, y, and z-axis, respectively.

To dealing with multiple qubits is necessary to introduce
the concept of tensor product. Let V and W be complex
vectors space of dimensions m and n, respectively. The
tensor product V ⊗ W is an mn-dimensional vector space.
For example, if we have a two-qubit quantum computer and
the first qubit is in the state |0⟩ and the second is in the
state |1⟩, then the quantum computer is in the state |0⟩ ⊗
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|1⟩ = |01⟩ = [0, 1, 0, 0]T . The resulting vector is a four-
dimensional vector space. The general state |ψ⟩ of a 2-qubit
is a superposition |ψ⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + δ |11⟩,
with the constraint |α|2 + |β|2 + |γ|2 + |δ|2 = 1. In general,
the quantum state |ψ⟩ of an n-qubit is a superposition of 2n

states |0⟩ , |1⟩ , . . . , |2n − 1⟩ (computational basis in decimal
notation), |ψ⟩ =

∑2n−1
i=0 αi |i⟩ , with the amplitudes αi con-

strained to
∑2n−1

i=0 |αi|2 = 1.
Applying the Hadamard gate to the n-qubit state |0⟩ we

obtain H⊗n |0⟩ = (H |0⟩)⊗n = 1√
2n

∑2n−1
i=0 |i⟩ . Thus, this

product produces an equally weighted superposition of all
computational basis states, when the input is the state |0⟩. This
state is useful for applying quantum parallelism. Quantum
parallelism is one of the most important features of quantum
computers that promise to solve problems that are too hard for
classical computers to solve in reasonable amount of time.

To conclude this discussion of basics of quantum comput-
ing, let us consider a very important operation on 2-qubit
system, the controlled-NOT or CNOT operation. It has two
input qubits, the control and the target qubit, respectively. The
target qubit is flipped only if the control qubit is set to 1, that
is, |a, b⟩ → |a, a⊕ b⟩, where ⊕ is addition modulo 2.

III. QUANTUM CLASSIFIERS

A. Quantum kernel-based classifier

In the classical SVM method, a nonlinear dataset is trans-
formed by a function, called kernel function, to another dataset
in a high-dimensional feature space, where the data become
linearly separable. It can be performed using the so-called
kernel trick, which allows one to evaluate the kernel function
without explicitly mapping the data to the high-dimensional
feature space [10].

In the quantum scenario, the quantum feature map encodes
the dataset from its original low dimensional real space into
a high dimensional Hilbert space in a natural way [13].
So, kernel trick is unnecessary in quantum approaches. The
potential of using quantum methods comes from the fact that,
in general, quantum mapping cannot be efficiently simulated
with classical computers [14], [15]. This is a necessary, but
not sufficient, condition to obtain quantum advantage using
quantum kernels. In the kernel-based approach, the feature
map transforms an input dataset to a set of multi-qubit states.
Thus, the kernel matrix is constructed by calculating all the
inner products of quantum states and then the standard SVM
is used for classifying the dataset. As we can see in Sec. IV
(Tables I, II and III), different feature maps lead to different
kernels which can influence on the classification accuracy, so
a careful analysis of the feature map must be done.

There are several techniques to map classical data into
quantum data in high dimensional spaces [13], [14], [16]. In
general, each n-dimensional classical data x ∈ Rn is encoded
into a unitary operator Uϕ(x) through an encoding function
ϕ(x), and it is applied to the initial state |0⟩⊗n. That is,
the classical data x ∈ Rn is mapped to the quantum state
|ϕ(x)⟩ = Uϕ(x) |0⟩

⊗n ∈ C2n . Then, the quantum kernel is
given by the overlap of two data-encoding quantum states,
K(x,x′) = | ⟨ϕ(x)|ϕ(x′)⟩ |2. This quantity can be efficiently

estimated by using the SWAP test [17]. Now, we can use this
kernel as a subroutine in a classical SVM, which yields a
hybrid quantum-classical approach. In this case, the separating
hyperplane is constructed in a purely classical manner, only
the kernel function between the training datapoints is evaluated
on the quantum simulation.

B. Quantum feature map

In this work we present a 2-qubit classifier algorithm applied
to a multi-user detection system. Our algorithm is based on
Ref. [14] and utilizes both QKC and VQC methods. The main
idea is to load classical data from the MU-DS-CDMA model
(see Fig. 1) into quantum states, through a procedure called
quantum feature map.

In [14], the authors presented a set of feature maps that
is conjectured to be hard to simulate classically and that can
be implemented as short-depth circuits on near-term quantum
devices. The quantum feature map is defined by

UΦ(x) =
∏
d

UΦ(x)H
⊗n, (9)

where
UΦ(x) = ei

∑
S∈I ϕS(x)

∏
k∈S Pk , (10)

n is the number of qubits that corresponds to the dimension of
the datapoints x, which are encoded through the coefficients
ϕS(x). S is a set of qubit indices that describes the connections
in the feature map, I is a set containing all these index sets
and Pk ∈ {I, X, Y, Z}. The encoding function is given by

ϕS : x 7→

{
xi if S = {i}
(π − xi)(π − xj) if S = {i, j}. (11)

For example, writing ϕS(x) = ϕS and choosing n = 2, I =
{{1}, {2}, {1, 2}}, Pk being the matrix Pauli Z acting on the
k-th qubit, the equation (10) becomes

Uϕ(X) = ei(x1Z1+x2Z2+(π−x1)(π−x2)Z1Z2). (12)

The sequence of Pauli matrices Z1, Z2 and Z1Z2 in Eq. (12)
is denoted by [Z,Z,ZZ].

The paper [14] only considered the feature map given by
Eq. (12). Here, inspired by [18], we implement different types
of encoding functions for our dataset (13)-(17):

ϕ1(x) = x1, ϕ2(x) = x2, ϕ1,2(x) = πx1x2; (13)

ϕ1(x) = x1, ϕ2(x) = x2, ϕ1,2(x) =
π

2
(1− x1)(1− x2); (14)

ϕ1(x) = x1, ϕ2(x) = x2, ϕ1,2(x) = exp

(
|x1 − x2|2

8/ ln(π)

)
; (15)

ϕ1(x) = x1, ϕ2(x) = x2, ϕ1,2(x) =
π

3 cos(x1) cos(x2)
; (16)

ϕ1(x) = x1, ϕ2(x) = x2, ϕ1,2(x) = π cos(x1) cos(x2). (17)

We also consider different Pauli matrices sequences
[P1, P2, P3P4], with Pi ∈ {I, X, Y, Z}, in our algorithms.

For example, the Fig. 2 shows the circuit of the quantum
operator UΦ(x), with n = 2 qubits, circuit depth d = 1, set of
Pauli gates [X, I, ZY ] and encoding function (15):
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Fig. 2. Circuit of UΦ(x) with n = 2, d = 1, Pauli gates [X, I, ZY ] and
encoding function (15).

C. Variational quantum classifier

Variational quantum classifier is a supervised QML algo-
rithm used for classification problems in Noisy Intermediate
Scale Quantum (NISQ) Technology [19]. The authors of [14]
proposed a VQC model by exploring NISQ devices without
the need for extra error correction approaches. VQC depends
on free parameters and consists basically in three parts: data
encoding (or data loading), a variational circuit (or ansatz)
and measurement. The variational quantum circuit is used to
encode the data into the quantum circuit and tune the hyper
parameters with rotation gates, Rx, Ry and Rz [16], [20]. The
cost function measures the similarity between the resultant
label of the circuit and the actual label. It also updates the
parameters of the variational circuit using iterative device
measurements. The optimizer evaluates the cost function with
the current parameters and selects the next iteration’s param-
eters until it converges on an optimal solution. The hybrid
nature of this family of algorithms comes from the fact that
the cost functions are evaluated using quantum resources and
optimized through classical ones.

For a set of parameters θ, input data x with binary output
labels yi ∈ {−1, 1}, we will implement a parameterized
quantum circuit that outputs the quantum state:

|Ψ(x, θ)⟩ = UW (θ)Uϕ(x) |0⟩ , (18)

where UW (θ) is the unitary variational circuit and Uϕ(x) is
the unitary data encoding circuit. In this work, Uϕ(x) is
implemented using the set of encoding function (11), (13) -
(17) and UW (θ) is implemented using both RealAmplitude and
TwoLocal circuits from the Qiskit circuit library [21], as can
be shown in Fig. 3 and Fig. 4, respectively.

Fig. 3. Ansatz RealAmplitudes with n = 2, d = 2, Pauli gates [X, I, ZY ]
and encoding functions (15).

The VQC model provided by Qiskit library [21] interprets
the measured bitstrings as the output of a classifier by calcu-
lating the parity of the given bitstring. If the parity is even,
it returns a label 1, and if the parity is odd it returns a label
-1 [14].

Fig. 4. Ansatz TwoLocal with n = 2, d = 2, Pauli gates [X, I, ZY ] and
encoding functions (15).

IV. SIMULATIONS

A. Methods

We used two quantum ML methods for a binary classifi-
cation problem applied to the MU-DS-CDMA (see Sec. II-
A) dataset. These two methods are the QKC and the VQC,
briefly described in Sec. III-A and Sec. III-C, respectively.
We also utilized the Qiskit library (an open-source quantum
computing framework created by IBM®) [21] for the quantum
machine learning task with a local quantum simulator. The
classical kernel-based method for SVM (Sec. II-B) was run
on a classical computer with a regular CPU.

B. Simulation Results

In this section, we present classification accuracy results
for different types of quantum kernels and compare to RBF
for classical SVM. We demonstrate that the performance of
quantum SVM can be comparable to classical SVM and, in
some situations, outperform the classical model when kernels
becomes more complex. See Tables I, II and III.

We consider a MU-DS-CDMA system supporting N = 2
users with M = 4 chips per symbol. The chip sequences of the
two users were set as (1,1, -1, -1) and (1,-1, -1,1), respectively.
The transfer function of the channel impulse responses (CIR)
used in this simulation is H(z) = 0.3+ 0.7z−1 +0.3z−2 and
the additive white Gaussian noise (AWGN) has zero mean and
variance σ2

n. We also consider three signal to noise ratio (SNR)
values: 10 dB, 15 dB, and 20 dB. To evaluate the approach,
in the time sequence of the received symbols, a set with the
first 50 symbols (preamble) is used for training and validation,
for each noise condition. In this set we perform a division of
60:40 percent, that is, the first 30 samples are used to train
the model and the next 20 for validation.

For each signal noise condition, we performed the tests
using the feature maps in Eqs. (11) and (13)-(17) and for each
feature map, we used 48 combinations of Paulis matrices of
the type [P1, P2, P3P4]. Thus, for every QKC, VQC RealAm-
plitude and VQC TwoLocal method, the algorithm was run
6*48=288 times. The tables I, II, III show the accuracy of the
best model settings:

We first consider the results for the dataset of 10 dB of SNR.
Table I shows that the VQC TwoLocal model with default
feature map (11) and Pauli matrices sequence [Z, I, ZY ]
achieved the best accuracy in terms of train and validation
dataset, while the classical RBF outperforms all other methods
in the test column. Test represents the accuracy of the model
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TABLE I
COMPARISON PERFORMANCE OF SVM DETECTOR AND QUANTUM

CLASSIFIERS FOR USER 2 WITH SNR=10DB ON A QUANTUM SIMULATOR.

Classifiers Encoding Pauli Train Validation Test

QKC (11) [Y, I, ZY] 93% 85% 52%
VQC RealAmp. (11) [X, ZY] 86% 80% 59%
VQC TwoLocal (11) [Z, I, ZY] 97% 85% 55%
Classical SVM RBF - 80% 65% 61%

TABLE II
COMPARISON PERFORMANCE OF SVM DETECTOR AND QUANTUM

CLASSIFIERS FOR USER 2 WITH SNR=15DB ON A QUANTUM SIMULATOR.

Classifiers Encoding Pauli Train Validation Test

QKC (16) [X, ZX] 97% 90% 80%
VQC RealAmp. (15) [Y, X, ZX] 90% 80% 82%
VQC TwoLocal (17) [Y, ZX] 90% 85% 81%
Classical SVM RBF - 97% 100% 71%

TABLE III
COMPARISON PERFORMANCE OF SVM DETECTOR AND QUANTUM

CLASSIFIERS FOR USER 2 WITH SNR=20DB ON A QUANTUM SIMULATOR.

Classifiers Encoding Pauli Train Validation Test

QKC (17) [Y,X, ZX] 100% 100% 80%
VQC RealAmp. (15) [Y, ZX] 96% 95% 80%
VQC TwoLocal (15) [Y,I, ZZ] 100% 100% 79%
Classical SVM RBF - 93% 100% 80%

in a set of 950 new points that were not previously used
in the training and validation phase. For 15 dB of SNR, the
classical SVM outperform all other methods in the validation
dataset, but presents a poorer result in the test phase, which
may indicate difficulty in generalizing the model. For 20 dB
of SNR, QKC, VQC RealAmp and Classical SVM achieved
the same results in the test phase.

On average, the accuracy over all three datasets in the testing
phase is 70.7% on the QKC quantum simulator; 73.4% on
VQC RealAmplitude; 71.7% on VQC TwoLocal and 70.7%
on the classical SVM. So, our experimental evaluation showed
the quantum approach outperform their classical counterpart
on average by 1 to 2% in terms of accuracy in two of three
different scenarios considered.

V. CONCLUSIONS

In this paper we evaluate the performance of classical
kernel-based SVM, provided by sklearn.svm.SVC with RBF
kernel function and default hyperparameter configurations,
and compare with two quantum methods: QKC and VQC.
We execute the quantum methods on Qiskit Aer simulator, a
Python-based quantum simulator of IBM Qiskit. In order to
find a quantum circuit that could yields the best performance
for a given dataset, we use six different feature maps and 48
sequences of Pauli matrices into the definition of the unitary
operator (10). Our experiments were performed on relatively
small datasets with low-dimensional data. However, the results

show that quantum computing can already be successfully
used for practical applications in machine learning problems.
An interesting question would be to apply this approach
to a higher-dimensional data, such that a MU-DS-CDMA
system with number of user greater than two. This would
imply that, with a greater number of resources, possibly larger
quantum circuits and with a greater number of qubits would be
required, making simulation in classical systems quite difficult.
However, this challenge will be mitigated as the effective
number of qubits in quantum systems increases in the near
future.
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