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Abstract— Creating accurate and reliable low-resource auto-
matic speech recognition (ASR) models remains challenging due
to limited curated data. This work proposes a bilingual ASR
model for Brazilian Portuguese and Latin-American Spanish
implemented with the Wav2Vec2.0 architecture and trained on
multiple speech datasets. It combines Language Identification
and Speech Recognition, employing a joint feature encoder and
task-specific context encoders. Evaluation in the Multilingual
Librispeech dataset demonstrates promising results, with an
average accuracy of 75.98% for language identification and a
competitive Word Error Rate of 30.45% in a bilingual setting,
comparable to the Whisper model.
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I. INTRODUCTION

The widespread use of automatic assistants worldwide is
one of the products of multilingual speech recognition, a
subtask of Automatic Speech Recognition (ASR) that has seen
significant improvements in the last years [1], [2]. Despite the
existence of products, this is still considered an active research
area. One of the challenges is to improve the performance of
these applications in languages with fewer speech resources,
such as datasets and phonetic dictionaries, that are necessary
to train models in a large continuous vocabulary [3]. These
resources are not equally available in all languages [4], [5],
and current solutions to speech tasks, such as language identi-
fication and ASR, require a large amount of data for training.

Portuguese and Spanish are broad languages with few
speech technologies available [6], so they are considered
between high and low-resource languages. Nevertheless, they
are among the top 10 most spoken languages in the world
[7], with a substantial online presence [8], but lack the same
amount of resources as Mandarin or English.

Low-resource languages like Portuguese and Spanish share
other similarities, such as belonging to the same linguistic
family [9], originated on the Iberian peninsula, and are the
current official languages of most countries in Latin America
[10]. The impact of ASR models with the same quality and
granularity as those in high-resources languages is felt by
large communities still insufficiently attended. The positive
effect of simultaneously developing speech applications for
both languages is well documented. For example, it achieves
good results in speech synthesis [11], [12]. Therefore, this
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study can contribute to the knowledge of training models in
related languages in ASR.

Thus, this work proposes an ASR for Brazilian Portuguese
and Latin-American Spanish. The main contribution is to
establish a bilingual ASR model combining the Wav2Vec2
architecture for Language Identification (LID) and training in
a self-supervised manner. LID model training is on languages
closely related to the target languages, and the ASR training
implements a monolingual approach.

The remainder of this paper is organized as follows: Section
II presents related work on multilingual ASR. Section III
describes the proposed bilingual ASR. Section IV details the
experiments to evaluate each part of the bilingual ASR. Section
V shows the results, and Section VI concludes the work.

II. RELATED WORKS

The latest developments in multilingual ASR have two
general directions: multilingual systems in which one model
is trained on a multilingual dataset and combine multiple
monolingual models. [1], [2], [13], and the combined use of
multiple monolingual models. In the second case, using ASR
monolingual models in a multilingual setting usually involves
Language Identification (LID) to select the adequate ASR
model for each utterance. Considering multilingual solutions,
studies propose end-to-end transcription models using the
Seq2seq architecture in a multilingual dataset getting good
results. For example, the model in [13] is trained on ten
languages and then ported to another four languages using
transfer learning. The study of [14] trained on 51 languages
achieves improvement over monolingual models. Examinating
solutions with multiple monolingual models, the RNN-T ar-
chitecture trains ASR and LID models together in streaming
applications. The work of [15] develops a LID model that
uses acoustic and text embeddings to choose the correct ASR
model in 4 different languages. The work in [16] uses pre-
trained LID embeddings to choose between ASR models in
English-Spanish and English-Hindi pairs.

Part of development approaches train labeled data, which
is difficult to obtain and is limited to all languages that are
not rich in acoustic resources. The emergence of techniques
that create a good representation of speech in an unsupervised
manner [17], [18] enabled research to use more abundant unla-
beled data. These techniques perform a series of speech-related
tasks, such as language identification [19], speaker recognition
[20], emotion recognition [21], and ASR. However, do not
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Fig. 1: Schematic drawing of the Bilingual ASR. The audio signal X is the input to a feature encoder that transforms it into
speech representations Z. These representations enter into the LID and ASR context encoders. The LID output OLID is the
language, and the ASR output OASR is the transcription.

focus on low-resource languages, such as the ones targeted in
this study.

III. BILINGUAL ASR MODEL

In this Section, we detail the architecture of our approach.
Figure 1 shows the structure of the proposed bilingual ASR
model. The model adopts building blocks of the Wav2Vec2.0
architecture [18], the feature encoder (represented in yellow),
followed by context encoders fine-tuned for LID (illustrated
in green), and monolingual ASR in each of the target lan-
guages, Brazilian Portuguese (depicted in blue) and Latin-
American Spanish (represented in red). Following subsections
present details on the structure of the Wav2Vec2.0, the training
regimes and objectives, and the adaptations made to our case.

A. Wav2Vec2 Architecture

LID and ASR models have Wav2vec2.0 architecture as a
base [18] divided into two parts: the feature and the context
encoder. The feature encoder maps the audio into a set of
speech representations, and the context encoder maps the
speech representations into context representations within rel-
ative positions. Thus, the context representations serve several
downstream tasks in the fine-tuning step. For this, a classifier
is part of the context encoder with the task outputs as targets.

B. Feature Encoder

As illustrated in Figure 1, the feature encoder maps a chunk
of the raw audio X to a dense set of speech representations to
be processed by the remainder of the network. This set Z =
z1, ..., zT represents T time steps. The speech representations
are quantized to qt considered the target in the self-supervised
training.

C. Context Encoder

The speech representations created in the feature encoder
are the input to a Transformer network that yields context

representations C = c1, ..., cT . These representations do not
use absolute position encoding but relative position, thus being
more robust. The context representations connect to the output
of a downstream task by a classification network on the top
of the Transformers. Classifier output O depends on the task
at hand. LID model outputs OLID are strings representing
the language of the utterance. The output OASR of the ASR
models consists of the letters of the target languages, added
by tokens for space and padding.

D. Training

1) Pre-training: The pre-training of the model achieves
using only unlabeled data. After the training feature encoder
part of the speech representation is masked. The Transformer
network training allows learning the context representations ct
that identify the quantized speech representation qt from a set
K + 1, the correct qt plus K distractors uniformly sampled
from the masked representations from the same utterance.

2) Fine-tuning: The fine-tuning of the model is the process
by which the context representations ct map to output classes,
and the class number and form depend on the model-tuned
task. Thus, fine-tuning a pre-trained model happens when
adding a classifier to the context network with O classes
representing the possible outputs. The classifier training uses
Connectionist Temporal Classification (CTC) loss function
[27]. In the case of ASR, the output classes OASR are the
characters that form the output text. These characters may
be letters, accents, space, and even punctuation. In the case
of LID, the output classes OLID are the languages of each
utterance.
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Dataset Language Size (h) Size (utterances) Speakers (m/f)
CETUC [22] Portuguese 99 101k 100 (50/50)
Common Voice [4] 21 54 45k -
LapsBM [23] Portuguese 0.9 1k -
Latin American Spanish Corpora [24] Spanish 37h 24k 174
MLS [5] 22 1000 2800k 128 (62/66)
Voxforge [25] Portuguese 4 4k -
Voxlingua107 [26] 43 196 64k -
Alana Chatbot Portuguese 1.3 1k 5 (3/2)

TABLE I: Characteristics of the datasets used in the ASR and LID experiments.

Context Encoder Output
LID ["pt", "es","unk"]

ASR Portuguese ["", "<pad>", "</s>", "<unk>", "|", "A",
"E", "O", "S", "R", "I", "N", "D", "M",
"T", "U", "C", "L", "P", "V", "G", "F",
"H", "Q", "B", "Ã", "Ç", "É", "Á", "Z",
"J", "X", "I", "Ó", "Ê", "-", "Õ", "À",
"Ú", "Ô", "Â", "Y", "K", "W"]

ASR Spanish ["a", "b", "c", "d", "e", "f", "g", "h",
"i", "j", "k", "l", "m", "n", "o", "p", "q",
"r", "s", "t", "u", "v", "w", "x", "y", "z",
"ą", "á", "é", "í", "ñ", "ó", "ú", "ü", "|",
"[UNK]", "[PAD]"]

TABLE II: Output of the LID and ASR classifiers.

IV. EXPERIMENTAL SETUP

Performed experiments are with a cloud instance containing
a V100 Tesla GPU with 16GB RAM, Linux operating system,
using Python version 3.7 and the Huggingface4 training frame-
work.

A. Datasets

The characteristics of the speech datasets used in experi-
mental procedures are detailed in Table I. The training dataset
for ASR in Brazilian Portuguese consists of 157k utterances
taken from the CETUC [22], Common Voice [4], LapsBM
[23], Multilingual Librispeech (MLS) [5], Voxforge [25] and
Alana Chatbot datasets. The Latin-American Spanish ASR
training consists of 20k utterances from the Common Voice [4]
dataset and the Argentinian partition from the Latin-American
Spanish Corpora [24].

The LID training dataset consists of Portuguese, Spanish,
Catalan, and Galician partitions of the Voxlingua107 [26] to
train the model. Selected languages are due to their proximity
to the target languages. The evaluation dataset consists of
4k utterances, half taken from the Portuguese and half from

1Only Portuguese and Spanish partitions of the Common Voice dataset are
used in the experiments. The details presented in this table refer to those
partitions.

2Only Portuguese and Spanish partitions of the MLS dataset are used in
the experiments. The details presented in this table refer to those partitions.

3Only Portuguese, Spanish, Catalan, and Galician partitions of the Voxlin-
gua are used in the experiments. The details presented in this table refer to
those partitions.

4https://huggingface.co/

Spanish partitions of the MLS [5] dataset. The datasets used
in the pre-training step are discussed in detail on [1] for the
Portuguese ASR model and on [2] for the Spanish ASR model
and LID model.

The pre-processing of the datasets consists in resampling
the audio to 16kHz and mixing it so each audio is monaural.
As well as labeled audio with at least the transcription of the
utterance and a token indicating the spoken language.

B. Metrics

The ASR evaluation uses two metrics: Word Error Rate
(WER) and Word Information Lost (WIL). The WER of a
sentence or set of sentences is the rate between the number
of substitutions (S), insertions (I), and deletions (D) over the
total number of words (N ). Is calculated as [28]:

WER =
D + I + S

N
(1)

WIL measure, based on Mutual Information, is a statistical
dependence between two pairs of sentences. For example,
considering S as the number of substitutions in a sentence,
D as the number of deletions, I as the number of insertions,
and H as the number of hits or correct words, the WIL of a
sentence or set of sentences is calculated as [28]:

WIL = 1− H2

(H + S +D)(H + S + I)
(2)

Accuracy is the models’ evaluation metric, in terms of LID,
calculated as the rate between the correct number and the total
number of classifications in the test.

C. LID Setup

In the LID fine-tuning step, the wav2vec pre-trained encoder
XLR-S [2] append a pooling layer and a linear layer with the
output dimension of L = 3. Table II shows the model’s out-
put consisting of tokens representing two possibilities: audio
languages, Portuguese or Spanish, and an unknown language
if the audio is not one of the intended ones. Models training
implements Adam optimizer with learning rate lr = 3e−3 and
linear decay learning schedule. For a maximum duration of 1
second during training speech signal is truncated.

D. ASR Setup

In the ASR fine-tuning, the wav2vec pre-trained encoder
XLR-S [2] appended a pooling layer and a linear layer with
L output dimension, being L the vocabulary size for each lan-
guage. In Portuguese, L = 44, and in Spanish L = 37. Table II



XLI BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2023, OCTOBER 08–11, 2023, SÃO JOSÉ DOS CAMPOS, SP

(a) WER results. (b) WIL results.

Fig. 2: Performance of the proposed models in the Portuguese and Spanish partitions of the MLS dataset.

Model Accuracy
Proposed model 75.98%

Whisper 99.82%

TABLE III: Accuracy of the LID model.

shows detailed vocabulary with the letters, space, and special
tokens. These tokens are used instead of unknown characters,
space between letters, and padding, which is important for
CTC decoding. Models training implements Adam optimizer
with learning rate lr = 3 × 103 and linear decay learning
schedule.

E. Comparative Model

Comparing the proposed model with the Whisper model
[29], a multilingual ASR model trained in over 680k hours
of speech covering 96 languages. Model selection is due to
its remarkable performance in ASR and other speech-related
tasks.

V. RESULTSA. Monolingual ASR

The results are illustrated in Figure 2. Experiments show
that the proposed model achieves high performance compared
to the SOTA Whisper model on the studied languages in WER
(14.23% against 19.56%) and WIL (23.26% against 30.53%).
Despite the little training dataset, the result corroborates
previous studies in this testing scenario (see Table 9 in [2]).
Moreover, the results in Portuguese are even better than those
achieved in the XLR-S paper.

B. LID

The test accuracy of the Language ID in the target lan-
guages, Portuguese and Spanish, is shown in Table III. The
average accuracy is 75.98%, which is worse than the per-
formance of the comparative model, Whisper (99.82%). The
experimental results show that the MLS dataset provides a
challenging scenario for the LID model proposed in this work.

Fig. 3: Performance of the proposed model in a bilingual
dataset formed by the Portuguese and Spanish partitions of
the MLS dataset.

One possibility is that the training with only four different
languages is insufficient to provide good separation between
the two languages. An alternative is that training the model
with historically and linguistically close languages such as
Portuguese, Spanish, Catalan, and Galician does not provide
enough information to separate the language correctly.

C. Bilingual ASR

The result of the final model, combining LID and ASR,
in a bilingual dataset formed by the test datasets from the
Portuguese and Spanish partitions of the MLS dataset, is
shown in Figure 3. The results indicate that the final model
can be competitive when compared with the current SOTA,
and the low accuracy of the LID module restricts the model
performance in a bilingual setting.
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VI. CONCLUSION

In this paper, we develop a bilingual ASR model in Por-
tuguese and Spanish that combines a LID model and two
monolingual ASR models sequentially, using the Wav2Vec2.0
architecture. We train monolingual ASR models in the target
languages and a bilingual LID model to choose the proper
ASR model for an utterance from the identified language.
Experimental results show that the monolingual ASR models
achieve comparable state-of-the-art performance in the widely
used MLS dataset, despite training on a small amount of data.
The LID model trained with four languages yields below-
average accuracy in the MLS test dataset, indicating a train
with a different set or number of languages. This work paves
the way for different studies that combine speech recognition
and audio classification using the same feature encoding, such
as multi-dialect speech recognition, emotion recognition with
ASR, and speaker identification with language identification.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Alana AI for the financial
and technical support to develop this work.

REFERENCES

[1] Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mo-
hamed, and Michael Auli, “Unsupervised cross-lingual representation
learning for speech recognition,” arXiv preprint arXiv:2006.13979,
2020.

[2] Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia,
Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth
Saraf, Juan Pino, et al., “Xls-r: Self-supervised cross-lingual speech
representation learning at scale,” arXiv preprint arXiv:2111.09296, 2021.

[3] Laurent Besacier, Etienne Barnard, Alexey Karpov, and Tanja Schultz,
“Automatic speech recognition for under-resourced languages: A sur-
vey,” Speech communication, vol. 56, pp. 85–100, 2014.

[4] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael
Kohler, Josh Meyer, Reuben Morais, Lindsay Saunders, Francis M Tyers,
and Gregor Weber, “Common voice: A massively-multilingual speech
corpus,” arXiv preprint arXiv:1912.06670, 2019.

[5] Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and
Ronan Collobert, “Mls: A large-scale multilingual dataset for speech
research,” arXiv preprint arXiv:2012.03411, 2020.

[6] Thales Aguiar de Lima and Márjory Da Costa-Abreu, “A survey on
automatic speech recognition systems for portuguese language and its
variations,” Computer Speech & Language, vol. 62, pp. 101055, 2020.

[7] M. Paul Lewis, Ed., Ethnologue: Languages of the World, SIL
International, Dallas, TX, USA, 2022.

[8] Ramesh Pandita, “Internet: A change agent an overview of internet
penetration & growth across the world,” International Journal of
Information Dissemination and Technology, vol. 7, no. 2, pp. 83, 2017.

[9] Murray B Emeneau, “India as a lingustic area,” Language, vol. 32, no.
1, pp. 3–16, 1956.

[10] Francesc Alías, Antonio Bonafonte, and António Teixeira, “Editorial
for special issue iberspeech2018: Speech and language technologies for
iberian languages,” 2020.

[11] Pallavi Baljekar, Sai Krishna Rallabandi, and Alan W Black, “An
investigation of convolution attention based models for multilingual
speech synthesis of indian languages.,” in Interspeech, 2018, pp. 2474–
2478.

[12] Jaka Aris Eko Wibawa, Supheakmungkol Sarin, Chen Fang Li, Knot
Pipatsrisawat, Keshan Sodimana, Oddur Kjartansson, Alexander Gutkin,
Martin Jansche, and Linne Ha, “Building open javanese and sundanese
corpora for multilingual text-to-speech,” 2018.

[13] Jaejin Cho, Murali Karthick Baskar, Ruizhi Li, Matthew Wiesner,
Sri Harish Mallidi, Nelson Yalta, Martin Karafiat, Shinji Watanabe, and
Takaaki Hori, “Multilingual sequence-to-sequence speech recognition:
architecture, transfer learning, and language modeling,” in 2018 IEEE
Spoken Language Technology Workshop (SLT). IEEE, 2018, pp. 521–
527.

[14] Vineel Pratap, Anuroop Sriram, Paden Tomasello, Awni Hannun, Vitaliy
Liptchinsky, Gabriel Synnaeve, and Ronan Collobert, “Massively
multilingual asr: 50 languages, 1 model, 1 billion parameters,” arXiv
preprint arXiv:2007.03001, 2020.

[15] Chander Chandak, Zeynab Raeesy, Ariya Rastrow, Yuzong Liu, Xi-
angyang Huang, Siyu Wang, Dong Kwon Joo, and Roland Maas,
“Streaming language identification using combination of acoustic repre-
sentations and asr hypotheses,” arXiv preprint arXiv:2006.00703, 2020.

[16] Surabhi Punjabi, Harish Arsikere, Zeynab Raeesy, Chander Chan-
dak, Nikhil Bhave, Ankish Bansal, Markus Müller, Sergio Murillo,
Ariya Rastrow, Sri Garimella, et al., “Streaming end-to-end bilin-
gual asr systems with joint language identification,” arXiv preprint
arXiv:2007.03900, 2020.

[17] Alexei Baevski, Michael Auli, and Abdelrahman Mohamed, “Effec-
tiveness of self-supervised pre-training for speech recognition,” arXiv
preprint arXiv:1911.03912, 2019.

[18] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael
Auli, “wav2vec 2.0: A framework for self-supervised learning of speech
representations,” Advances in Neural Information Processing Systems,
vol. 33, pp. 12449–12460, 2020.

[19] Zhiyun Fan, Meng Li, Shiyu Zhou, and Bo Xu, “Exploring wav2vec
2.0 on speaker verification and language identification,” arXiv preprint
arXiv:2012.06185, 2020.

[20] Sergey Novoselov, Galina Lavrentyeva, Anastasia Avdeeva, Vladimir
Volokhov, and Aleksei Gusev, “Robust speaker recognition with trans-
formers using wav2vec 2.0,” arXiv preprint arXiv:2203.15095, 2022.

[21] Leonardo Pepino, Pablo Riera, and Luciana Ferrer, “Emotion recog-
nition from speech using wav2vec 2.0 embeddings,” arXiv preprint
arXiv:2104.03502, 2021.

[22] VFS Alencar and Abraham Alcaim, “Lsf and lpc-derived features for
large vocabulary distributed continuous speech recognition in brazilian
portuguese,” in 2008 42nd Asilomar conference on signals, systems and
computers. IEEE, 2008, pp. 1237–1241.

[23] Nelson Neto, Carlos Patrick, Aldebaro Klautau, and Isabel Trancoso,
“Free tools and resources for brazilian portuguese speech recognition,”
Journal of the Brazilian Computer Society, vol. 17, no. 1, pp. 53–68,
2011.

[24] Adriana Guevara-Rukoz, Isin Demirsahin, Fei He, Shan-Hui Cathy Chu,
Supheakmungkol Sarin, Knot Pipatsrisawat, Alexander Gutkin, Alena
Butryna, and Oddur Kjartansson, “Crowdsourcing latin american spanish
for low-resource text-to-speech,” in Proceedings of the Twelfth Language
Resources and Evaluation Conference, 2020, pp. 6504–6513.

[25] KEN Mclean, “Voxforge,” https://voxforge.org/pt, Accessed: 2022-09-
01.

[26] Jörgen Valk and Tanel Alumäe, “Voxlingua107: a dataset for spoken
language recognition,” in 2021 IEEE Spoken Language Technology
Workshop (SLT). IEEE, 2021, pp. 652–658.

[27] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmid-
huber, “Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks,” in Proceedings of the
23rd international conference on Machine learning, 2006, pp. 369–376.

[28] Andrew Cameron Morris, Viktoria Maier, and Phil Green, “From wer
and ril to mer and wil: improved evaluation measures for connected
speech recognition,” in Eighth International Conference on Spoken
Language Processing, 2004.

[29] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, and Ilya Sutskever, “Robust speech recognition via large-
scale weak supervision,” arXiv preprint arXiv:2212.04356, 2022.


