
XLI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2023, 08–11 DE OUTUBRO DE 2023, SÃO JOSÉ DOS CAMPOS, SP.

Impairment mitigation in dual-polarization
single-span optical digital coherent systems using

support vector classifiers
Ivan Aldaya, Lucio Borges, Camila Costa, Julian L. Pita, Rafael A. Penchel,

José Augusto de Oliveira, and Grethell Peréz-Sánchez

Abstract— We report on using support vector classifiers (SVCs)
to mitigate the residual and fiber-induced nonlinear distortions
in a digital coherent optical communication system employing
dual-polarization 16-ary quadrature amplitude modulation with
a data rate of 100 Gbps. Simulation results reveal that SVC
can partially tackle the effect of the intra-polarization and
the inter-polarization nonlinear crosstalk. Simulations also show
that processing the information of both polarizations leads to
improved performance but needs to take special care to avoid
overfitting and biasing effect, requiring the implementation of
regularization. Regarding the training block size, processing each
polarization individually and together require around 20,000 and
27,500 symbols, respectively.
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I. INTRODUCTION

The development of high-speed digital signal proces-
sors (DSPs) enabled the implementation of optical digital
coherent communication systems [1], [2]. These systems re-
presented a revolution in the field of optical communications
because they allowed the adoption of advanced modulation
formats exploiting amplitude, phase, and polarization diversity
and paved the way to implement sophisticated impairment
compensation techniques [3]. This way, linear impairments,
such as phase noise, chromatic dispersion, and linear polari-
zation crosstalk, can be efficiently compensated in the digital
domain. However, noise and some practical issues lead to
residual effects of linear impairments. Nevertheless, the system
performance is mainly limited by the combination of the
additive noise and the nonlinear distortion caused by the fiber’s
Kerr effect.

Due to the stochastic nature of the photodetector noise
and its short coherence time, it is difficult to compensate.
Nonlinear distortion, on the other hand, is prone to be mitiga-
ted as it is deterministic. Different DSP-based compensation
techniques have been proposed in this scenario to overcome
this impairment. The first attempts included digital back
propagation (DBP) [4], [5], inverse Volterra series transfer
function (IVSTF) [6], [7], [8], and Wienner-Hammerstein
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(WH) [9], [10], which rely on model inversion. Various authors
demonstrated the capacity to compensate for the nonlinear
distortion of these methods, but their high computational
complexity prevented them from being adopted in real-time
applications. In order to find a trade-off between performance
and computational complexity, different machine learning
methods have been proposed, including clustering [11], [12],
[13], [14], supervised regression [15], [16], [17], [18], and
supervised classification [19], [20]. Supervised classification
is particularly interesting because, on the one hand, it typically
leads to better performance than clustering. On the other hand,
compared to regression, classification is preferable since no
further symbol detection is required. Support vector machine is
a machine learning technique that has been applied to systems
relying on multicarrier modulation formats [21] but remains
unexplored in systems using single-carrier modulation formats.

In the present paper, we applied a support vector clas-
sifier (SVC) to a single-span digital coherent optical com-
munication system employing dual-polarization (DP) 16-ary
quadrature amplitude modulation (16QAM) and operating
at 112 Gbps. Simulation results reveal that SVC can ef-
fectively mitigate the effects not only of the fiber-induced
nonlinear distortion but also of the residual Mach-Zehnder
modulato (MZM) impairments. We consider two different con-
figurations: SVC operating on each polarization independently
and on both polarizations simultaneously. Simulations reveal
that the latter approach is preferable in terms of performance
since it can tackle interpolarization nonlinear crosstalk, but
requires a more careful training configuration since it is prone
to overfitting.

II. CLASSIFICATION USING SUPPORT VECTOR MACHINES

Supervised classification based on SVC has been applied
to a broad variety of problems [22]. SVC was developed
by Vapnik and applied to classify data into two distinct
classes [23]. The main difference between SVC and other
classification algorithms, such as logistic regression, is that
SVC maximizes the gap between the data points belonging to
different classes [24]. SVC was originally applied to linearly
separable binary classification problems. However, SVC was
soon extended to multi-class classification by implementing
either a one-vs-one or one-vs-all approach [25]. In addition,
SVC can be modified to problems with nonlinear boundaries
by employing the denominated kernel trick [26]. This tech-
nique is similar to mapping the data into higher dimensional
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space but requires a much lower complexity. Different kernels
can be adopted, the most popular being the polynomial and
the radial basis functions (RBFs) [27]. Finally, as in any
other machine learning algorithm, a regularization term can be
included in SVC to avoid overfitting and improve prediction
accuracy [28].
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Fig. 1: Block diagram of the optical communication system
alongside with the SVCs. We also include the constellations at
the input and output of the fiber for a launched optical power
of 10 dBm.

In order to mitigate the effects of nonlinearities, SVC
is applied to the in-phase and quadrature componentes of
the constellations obtained after the compensation of linear
impairments. In this way, it is possible to reduce the effect of
inter-symbol interference and consider that the distortion on
the symbol, depends only on the actual symbol itself. We can
adopt two approaches. On the one hand, we can classify the
symbols of the constellations of each polarization independen-
tly. Thus, we use two parallel SVC where the inputs are the
in-phase and quadrature component of of each constellation,
Fig. 1. Alternatively, we can process the two polarizations
simultaneously in a single SVC, which is fed by the in-
phase and quadrature components of the two polarizations.
Regarding the implementation of the SVC classifier, we used
the scikit-learn Python library. We set the kernel function to
RBF, we used the default value for gamma, which is inversely
proportional to the product of the number of features and and
their variance, and the stop condition was configured by setting
the tolerance to 10−3. Regarding the regularization parameter
C, its value was modified for particular configurations, which
is discussed in Section IV.

III. SIMULATION SETUP

Simulations are carried out in VPI Transmission Maker
and Python using the simulation setup shown in Fig. 2 and
described in [11]. At the transmitter side, a pseudo-random bit
sequence with a raw bit rate of 112 Gbps is divided into two
subsequences that are mapped into 16-QAM constellations.
The 16-QAM symbols are oversampled and filtred using a
raised-cosine filter (RCF) with a 20% roll-off factor. The
number of samples per symbol is further increased to 64
samples per symbol to emulate the digital-to-analog converter.
These signals are used to drive two dual-parallel in-phase-
quadrature (DP-IQ) MZMs the two orthogonal polarizations of

the output of a continuous wave (CW) laser with a linewidth
of 100 kHz and an operating wavelength of 1550 nm. The
two modulated signals are combined into a polarization beam
combiner (PBC) and amplified using an erbium-doped fiber
amplifier (EDFA) with a noise figure of 4 dB, which is used
to sweep the launched optical power from 0 dBm to 10 dBm.

The fiber link is simulated using the vectorial split-step
Fourier method (SSFM) configured with a dispersion pa-
rameter of D = 16 ps/(nm·km), a polarization mode dis-
persion parameter of DPMD = 0.1 ps/

√
km, an attenua-

tion coefficient of α = 0.2 dB/km, a nonlinear refractive
index of n2 = 0.26 µm2/W and an effective mode area of
Aeff = 80 µm2. The fiber link length was set to 140 km.

The incoming signal is detected using polarization and
phase diversity digital coherent receiver at the receiver side.
The recovered in-phase and quadrature components of the two
polarizations are then digitalized and processed in the DSP.
The first block of the DSP is the orthogonalization stage res-
ponsible for correcting any unbalance in the 90o optical hybrid.
The second stage is a frequency-domain static equalizer that
compensates for the chromatic dispersion of the fiber. In the
third stage, the polarization mode dispersion and the residual
linear polarization crosstalk are mitigated using a dynamic
equalizer employing the multi-modulus algorithm (MMA).
The frequency drift and the phase noise are compensated
using the blind phase search algorithm. Finally, the effects
of nonlinear distortion are addressed using SVC operating in
two modes: on the one hand, we process each polarization
independently, and on the other hand, both polarizations are
simultaneously considered.

The number of simulated bits is 2,097,152, corresponding
to 262,144 symbols in each polarization. The bit error ra-
tio (BER) is the figure-of-merit employed to assess the signal
quality. Since for some launched optical power levels the
constellation points do not present Gaussian distribution, BER
cannot be estimated using EVM, and direct error counting was
adopted.

IV. NUMERICAL RESULTS

In order to analyze the capacity of SVC to mitigate the
effects of nonlinear distortion, we apply this classification
method to received constellations under different launched
optical power conditions. For dual-polarization systems, two
approaches can be adopted: apply SVCs to the constellation
of each polarization independently, or alternatively, both po-
larizations can be processed together. In Fig. 3(a), we show
the results of applying SVC to each polarization, whereas in
Fig. 3(b), the BER results when the two polarizations are
processed simultaneously. In the two approaches, different
values of the regularization parameter C are considered and the
BER curves considering maximum-likelihood (ML) detection
are included.

The results shown in Fig. 3(a) reveal that when we apply
SVC to each polarization individually, it is possible to reduce
the BER for all the considered launched optical power levels.
Nevertheless, it can be observed that the BER improvement is
more prominent at elevated power levels, indicating that SVC
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Fig. 2: (a) Block diagram of the employed simulation setup. DAC: digital-to-analog converter, DA: driving amplifier, DP-
IQ-MZM: dual-parallel in-phase-quadrature Mach-Zehnder modulator, LD: laser diode, PBS: polarization beam splitter, PBC:
polarization beam combiner, EDFA: erbium-doped fiber amplifier, SSMF: standard single-mode fiber, PD: photodiode, and
ADC: analog-to-digital converter. (b) Output spectra and constellation diagram for launched optical power levels of 5 dBm
and 10 dBm.

partially compensates for the effect of the nonlinear distortion.
Regarding the effect of the regularization coefficient C, it can
be observed that for the contemplated values 0 ≤ C ≤ 10,
the obtained BER curves are indistinguishable. In particular,
it is important to note that even if no regularization is applied
(C = 0), good performance is obtained.

In Fig. 3(b), we show the BER curves obtained when the
information of both polarizations is processed simultaneously.
In contrast to the independent processing of polarizations, the
value of C has a dramatic effect on the performance of the
SVC. Indeed, it is possible to observe that for C = 0, at
low power levels, the performance of SVC is even worse
than for ML. When we introduce a regularization with low-to-
intermediate values, i.e., 0.1 and 1, the performance of SVC
improves for all the range of launched optical power. However,
when a value of C = 10 is employed, the performance
degrades. This sensitivity to the value of C can be explained
by noting that for C = 0, the classification based on SVC
suffers from underfitting, whereas for an excessively high
value of C, leads to biasing error. Furthermore, it is natural
to observe overfitting and biasing effects only when the two
polarizations are simultaneously processed because in this
approach the dimensionality of the model is higher than when

each constellation is processed independently.
Finally, in Fig. 3(c), we represent the BER curves obtained

using ML and the best configurations for the two considered
approaches. The first important point to note is that, inde-
pendently of the approach, SVC outperforms ML for the
whole considered range of launched optical power levels.
This indicates that SVC is capable not only to mitigate the
effects of nonlinear distortion but also some residual linear
effects. In particular, looking at the constellation of Fig. 2 for
launched optical power of 5 dBm, it is possible to observe a
larger separation between the central points. This is probably
caused by the nonlinear transmission curve of the MZM.
As the launched optical power increases, the fiber nonlinear
distortion is more significant and the BER curves of ML
and SVC separate. However, up to 7 dBm, the BER curves
for the two SVC approaches remain similar. For even higher
launched optical power levels, the curves for the two SVC
approaches diverge, leading to better results for the combined
processing of both approaches. This can be explained by
noting that the cross-phase modulation between the orthogonal
polarizations is neglected when each polarization is indepen-
dently processed. When both polarizations are simultaneously
processed, on the other hand, the effect of the nonlinear inter-
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Fig. 3: BER in terms of the launched optical power when
(a) each polarization is independently processed and (b) the
two polarizations are simultaneously processed. In both cases,
regularization parameter values of C = 0, 0.1, and 1, and 10
were considered. (c) Comparison of the BER curves for C=1
of the two approaches. In the three cases, the BER obtained
using ML detection is included.

polarization crosstalk caused by the cross-phase modulation
can be partially mitigated. Numerically, for ML detection,
the optimum BER is obtained for 7 dBm and yields a value
of 1.38×10−3. When SVC is applied to each polarization,
the optimum BER level is reduced to 5.75×10−4, which
is achieved for 8 dBm launched optical power. In contrast,
for dual polarization processing, the optimum BER is further
reduced to 4.17×10−4, for a launched optical power of 9 dBm.

The capability of SVCs to compensate for the intra-
polarization self-phase modulation, inter-polarization cross-
phase modulation and some of the transmitter impairments
is important, but, to be feasible, the number of symbols
required to train the SVCs should be as low as possible. In
order to quantify the effect of the training block size on the
classification performance, we sweep the number of training
symbols from 1,000 up to 30,000 and train the SVC with
100 random samples from the training subset, whereas the
test set is fixed. By contemplating different samples for each
training block size, we avoid the effect of sensitivity to the
possible outliers in the training subset, leading to a more robust
metric. The obtained BER values for the different numbers
of training symbols when we considered the polarizations
individually and together are presented in Fig. 4. For the sake
of interpretation, we included the evolution of the mean value
of the 100 repetitions (solid line) and the value of the minimum
average BER (discontinuous line) for both approaches. As
expected, the larger the size of the training block is, the lower
the average BER, as the training is more efficient. However,
the performance of SVC stabilizes for a certain number of
training symbols. Thus, optimum performance is achieved at
around 20,000 symbols when processing each polarization.
When processing the two polarizations, SVC requires a sligh-
tly larger number of symbols, around 27,500. This behavior
was expected since higher-dimensionality problems are harder

Fig. 4: Obtained BER for different numbers of training sym-
bols. For each number of training symbols, 100 different sub-
sets were considered. The straight line indicates the ensemble
average for each number of training symbols, whereas the
dotted line represents the BER for 50,000 training symbols.
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to train, and consequently, tend to require a larger number of
symbols.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have applied SVC to mitigate the effects of
nonlinear distortion in single-span dual-polarization 16QAM
digital coherent systems. Numerical results for a 112 Gbps
optical interconnect reveal that SVC is capable not only to
compensate for the fiber nonlinear distortion but also for some
other residual effects. In addition, we show that processing the
two polarizations simultaneously can improve classification
performance. However, the higher dimensionality of the model
requires a careful choice of the regularization constant to avoid
overfitting and biasing effect. As described in Section III, the
presented analysis is limited to a single-channel system. Future
work will assess the impact of the interchannel nonlinear
distortion, which is expected to degrade the performance of the
classifier, since, assuming that no information from interfering
channels is available, the interference would appear as a
stochastic effect.
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