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Improving Non-Stationary Acoustic Source
Classification with Metric Learning

Guilherme Zucatelli and Ricardo R. Barioni

Abstract— In this work, the metric learning is adopted to
improve the classification of non-stationary acoustic sources. The
proposed strategy aims to overcome the statistical differences that
arise from the non-stationary behavior by learning an optimal
function that minimizes intra-class and maximizes inter-class
distances. A convolutional neural network with metric learning
module generates embedded features of reduced size. Several
sources with different degrees of non-stationarity are selected for
the acoustic source classification task. Experiments demonstrated
that the proposed solution outperforms baseline systems for all
individual acoustic sources, leading to increments in the average
balanced accuracy, ROC and AUC in all scenarios.

Keywords— non-stationary acoustic sources, multi-class classi-
fication, metric learning, deep learning

I. INTRODUCTION

Non-stationarity is a significant challenge for recognizing
environmental sounds in signal processing and machine learn-
ing research areas [1][2][3][4]. This is especially important for
acoustic source classification systems, where limited training
samples are usually adopted to discriminate signals with
varying statistics over time [5][6]. Rather than fixing a station-
arity assumption of acoustic signals, tackling the natural non-
stationary behavior could lead to meaningful improvements in
various applications such as surveillance systems, hearing aid
devices, smart homes and robot navigation.

In a deep learning context, metric learning has been suc-
cessfully adopted in different acoustic tasks from emotion
recognition [7] and medical diagnosis [8] to speaker [9] and
acoustic scene classification [10][11]. Acoustic scenes are
usually composed of several different sources (Dog Bark,
Street Music and Siren) and acoustic effects (i.e. echo and
reverberation). This is fundamentally different from recogniz-
ing individual non-stationary acoustic sources. The mixture of
signals and effects mitigates the non-stationarity of the target
source as a practical consequence of the central limit theorem.

In this work, the metric learning strategy is explored to im-
prove individual non-stationary acoustic source classification.
The idea is extended from [12] to overcome the statistical
differences that arise from the non-stationary behavior by
learning an embedding generator network optimal strategy that
minimizes intra-class and maximizes inter-class distances [13].
A deep convolutional neural network (CNN) is adopted to
extract embedded features of reduced size from time-frequency
representations of acoustic signals. Therefore, the CNN can
learn similar characteristics on different representations of a
target class and map them to adjacent embeddings. Moreover,
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acoustic sources from different classes lead to separated em-
bedded features.

Several experiments are conducted to validate the proposed
solution on a multi-class classification scenario. Acoustic
sources with different non-stationary degrees are selected from
the UrbanSound [14] and ESC-10 [15] databases. The non-
stationarity is objectively accessed based on the Index of Non-
Stationarity (INS) [16]. The proposed approach is compared
to two baseline solutions: a classical support vector machine
(SVM) and a CNN model with a softmax classification layer.
As a result, the metric learning solution achieves at least an av-
erage 1.4 percentage points (p.p.) increment over the baseline
approaches in a multi-class classification task. Moreover, the
approach surpass competing methods for all individual non-
stationary acoustic sources.

The contributions of this work can be summarized as:
1) Investigation of metric learning approach for non-

stationary acoustic source classification.
2) Complete objective non-stationarity assessment for Ur-

banSound and ESC-10 acoustic sources.
3) Evaluation of the proposed strategy on multi-class clas-

sification and acoustic source verification tasks.
The remaining of this paper is organized as follows. In

Section II it is described the non-stationarity of acoustic
sources. The proposed metric learning strategy is presented in
Section III. Experiments and results are described at Section
IV. Finally, the conclusion is exposed at the end of this paper.

II. NON-STATIONARY ACOUSTIC SOURCES

A key goal for environmental sound classification systems
is to achieve a relevant and discriminative representation
of each class. This can be challenging when dealing with
acoustic sources due to their natural non-stationary behavior.
In other words, acoustic sources commonly present temporal
and spectral variations throughout time.

The Index of Non-Stationarity (INS) [16] is here defined to
objectively examine the non-stationarity of acoustic sources.
For a target signal x(t), the INS is obtained considering its
multitaper spectral representation Sx(l, f) as

Sx(l, f) =
1

K

K∑
k=1

S(hk)
x (l, f), (1)

where l is the frame, f is the frequency bin and S
(hk)
x (l, f)

is the spectrogram obtained considering the k-th Hermitian
function hk(t) as the taper [17], i.e.,

S(hk)
x (l, f) =

∣∣∣∣∫ x(s)hk(s− l)e−j2πfs

∣∣∣∣2 (2)
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Fig. 1: Spectrograms and relative INS for acoustic sources
Dog Bark (a), Drilling (b), and Street Music (c).

for hk(t) = e−t2/2Hk(t)/
√
π1/22kk!, where Hk(t) are Her-

mite polynomials that are obtained by recursion Hk(t) =
2tHk−1(t)− 2(k− 2)Hk−2(t) for k ≥ 2 and initializations of
H0(t) = 1 and H1(t) = 2t.

This measure compares the target signal with stationary
references called surrogates, adopting the symmetric Kullback-
Leibler distance and log-spectral deviation [18]. Surrogate
signals are generated by changing the phase of the spectral
representation of x(t) to realizations of a uniform distribution
U [−π, π], which then guarantees their stationary behavior [16].
The comparison is carried out for different time scales Th/T ,
where Th is the short-time spectral analysis length and T is
the total signal duration. For each length Th, a threshold γ is
defined to keep the stationarity assumption considering a 95%
confidence degree as

INS
{
≤ γ, signal is stationary
> γ, signal is non-stationary. (3)

Fig. 1 depicts the spectrogram and the corresponding INS
for three different acoustic sources extracted from the Urban-
Sound and ESC-10 databases [14][15]. The INS assessment
was implemented in Python1 and conducted in 14 time scales
Th/T . The maximum value of the INS is superior to the non-
stationary threshold γ in all cases, which means that all sources
are non-stationary. In Fig. 2 the INS maximum distribution
for all acoustic sources available in a log10 scale is illustrated.
The majority of cases present a maximum INS value above
the non-stationarity threshold, reinforcing the assumption of
acoustic sources’ non-stationarity. For maximum INS values
above 100 (log10(INS) > 2) the signal is considered as highly
non-stationary. It it important to notice that this is the case for
higher quartiles of several distributions presented on Fig. 2, as
well as for samples (a) and (b) from Fig. 1.

1Available at https://github.com/g-zucatelli/pyINS.
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Fig. 2: Distribution of INS maximum values over acoustic
sources from UrbanSound (a) and ESC-10 (b). The red dotted
line defines the non-stationary threshold (γ).

The focus of this work relies on the multi-class classification
of non-stationary acoustic sources. In addition to the non-
stationarity, each class is composed of a variety of audio
sources, which challenges the definition of a straightforward
classification strategy. This exemplifies the necessity of solu-
tions that can correctly adopt the varying characteristics of
acoustic sources to perform identification and discrimination
from a multi-class perspective.

III. BACKBONE ARCHITECTURE AND METRIC LEARNING

From a deep learning perspective, metric learning is de-
signed to (1) aggregate similar characteristics on closer em-
bedding regions, while (2) separating different features on
the embedding space. Therefore, we hypothesize that this
strategy might be adequate to learn similar characteristics
of non-stationary acoustic sources on varying time-frequency
representations. This way, the trained model is suited to deal
with non-stationary acoustic behavior by selecting the relevant
information of a class. Moreover, the embedding generator
model could be used on enrollment steps, labelling unseen
trained classes for acoustic recognition tasks.

The proposed approach adopts the MobileNet deep con-
volutional neural network architecture as its backbone [19].
Although other topologies could be considered, this particular
CNN has a lower number of parameters, due to depthwise
separable convolutions, while maintaining its performance on
several applications. The last MobileNet layer is removed
since the default model is directly used for classification
tasks, whereas an embedding layer is considered in the metric
learning strategy. To this end, an average pooling layer, a dense
layer, and the metric learning module are respectively included
as replacements. Fig. 3 depicts an overview of the proposed
model.
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Fig. 3: The model approach. The colored rectangles denote
the MobileNet blocks. The gray rectangle represents the input
layer. Conv represents as a sequence of Conv + BatchNor-
malization + ReLU and DepthConv denotes a sequence of
DepthwiseConv + BatchNormalization + ReLU. For each
block transition, either the number of channels doubles or the
channel dimensions decrease by half. This is followed by the
Metric Learning module that is used during the training step.

A. Metric Learning for Acoustic Source Classification

Metric learning (former called distance metric learning) is
a machine learning approach whose main purpose is to, given
a set of inputs from different classes, learn a function that
minimizes the distance for the same classes and maximizes
the distance for different classes [20].

Given a set of m inputs {xi}mi=1 ⊆ Rn, the goal is to
find a positive semi-definite matrix A so that the to-be-learned
distance metric d(x, y) between points x ∈ Rn and y ∈ Rn

is small when x and y are from the same class and large
otherwise, as in [13]:

d(x, y) =
√
(x− y)TA(x− y). (4)

As a Deep Learning solution, metric learning does not
need to directly optimize the distance function between the
original inputs. Since a deep neural architecture is previously
connected to the actual metric distance, the former aims to
output a set of features called embeddings, which are then
fed to the latter function as inputs. During the training step,
the embeddings are updated to satisfy the Metric Learning
constraints. After training, the metric learning module is
discarded, and the final model outputs the trained embeddings
in a feature extractor fashion.

Most deep metric learning approaches rely on minimizing
the intra-class and maximizing the inter-class geodesic dis-
tance between embeddings of size d. Within the surface of
the hypersphere H ∈ Rd, and considering a total of n classes,

TABLE I: Metric Learning Loss Function Parameters [21].

Loss Function α β γ
Modified Softmax 0 0 0
SphereFace 1.35 0 0
CosFace 0 0.1 0
ArcFace 0 0 0.1

the metric loss can be generically defined as

L = − 1

N

N∑
i=1

log
es(cos(αθyi+γ)−β)

es(cos(αθyi+γ)−β) +
∑n

j=1,j ̸=yi
es(cosθj)

(5)

where s is the hypersphere radius (which is the norm of
the Embedding vector), yi is the class of instance i and θyi

denotes the angle between the Embeddings of instance i and
the weights Wj ∈ Rd from W ∈ Rd×n. Parameters α and β
are defined for each loss function as represented in TABLE I.

IV. EXPERIMENTS AND RESULTS

In order to evaluate the proposed Metric Learning strategy
for non-stationary acoustic source classification, eight sources
are first selected from the UrbanSound database [14]: Air
Conditioner, Car Horn, Dog Bark, Drilling, Engine Idling,
Jackhammer, Siren and Street Music. Audios labeled as Fore-
ground are considered to guarantee the task of multi-class
source classification. The usage of other sources and Back-
ground audios would rather imply tasks of scene or impulse
event classification, which are not the focus of the present
work. In total, 4810 audio files at 16 kHz were adopted with
an average duration of 3.6 seconds. Similarly, all of the ten
sources available from the ESC-10 dataset are used on a multi-
class source classification task. Since this dataset is already
designed with foreground exposure and limited background
noise, filtering classes are not required.

Experiments are performed considering the classic acoustic
feature MFCC with 25 coefficients extracted every 21.3 ms
and 50% frame overlap. The final feature matrix is composed
of the MFCC and its summarized statistics as in [14], which
leads to a feature vector of 275 dimension per frame. The
Metric model was trained for all loss functions presented on
TABLE I with an SGD optimizer and a learning rate of 0.005.
For each batch, 32 audio samples of 5 seconds are considered.
The training is performed for a total of 20 epochs, where the
selected model is obtained based on the highest validation
accuracy.

The evaluation is conducted in a multi-fold cross-validation
procedure as designed in [14] and [15]. The comparative
baseline methods are defined by the classical SVM classifier
with a linear kernel and a CNN model with a softmax output
classification layer. For Metric Learning, audios are divided
into non-overlapping segments. The Metric model is able to
map each segment to its corresponding 32-dimension embed-
ding vector. The test occurs by calculating the average distance
between the test embeddings and embedding centroids derived
from training audio classes. Each test audio is therefore
associated with the smallest average distance among the eight
acoustic classes.
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TABLE II: Acoustic Source Classification Accuracies (%) for UrbanSound.

Non-Stat.
Sources

(%)

Average
log10(INSmax)

Acoustic Source MFCC-SVM CNN Modified
Softmax SphereFace CosFace ArcFace

100.0 2.52 Dog Bark 70.2 92.6 92.2 93.0 93.0 93.3
100.0 1.53 Street Music 90.0 89.3 88.6 89.4 90.9 90.9
99.5 1.08 Jackhammer 50.8 66.1 67.3 66.9 67.9 68.3
96.9 1.56 Drilling 79.9 76.3 80.3 80.5 80.8 81.5
90.8 1.19 Car Horn 79.7 79.7 77.1 64.7 79.1 81.7
90.3 1.79 Siren 70.6 72.5 71.4 73.2 68.4 71.0
62.7 0.28 Air Conditioner 49.9 54.3 53.3 58.2 54.1 56.6
56.4 0.28 Engine Idling 66.7 70.0 63.3 66.6 70.1 68.9

Average Balanced Accuracy 56.1 75.1 74.2 74.1 75.5 76.5

TABLE III: Acoustic Source Classification Accuracies (%) for ESC-10.

Non-Stat.
Sources

(%)

Average
log10(INSmax)

Acoustic Source MFCC-SVM CNN Modified
Softmax SphereFace CosFace ArcFace

100.0 3.38 Sneezing 87.5 95.0 95.0 90.0 87.5 97.5
100.0 2.96 Dog 67.5 77.5 70.0 75.0 75.0 82.5
100.0 2.88 Rooster 20.0 90.0 92.5 97.5 92.5 92.5
100.0 2.87 Crying Baby 85.0 90.0 90.0 92.5 95.0 95.0
100.0 2.69 Clock 82.5 85.0 92.5 90.0 85.0 85.0
100.0 2.03 Chainsaw 65.0 87.5 85.0 90.0 87.5 90.0
100.0 1.70 Crackling Fire 85.0 90.0 90.0 92.5 90.0 90.0
100.0 1.59 Sea Waves 87.5 87.5 90.0 85.0 90.0 90.0
100.0 0.81 Rain 57.5 65.0 65.0 65.0 72.5 62.5
85.0 0.78 Helicopter 70.0 67.5 72.5 75.0 75.0 67.5

Average Balanced Accuracy 70.7 83.5 84.3 85.3 85.0 85.3
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Fig. 4: ROC curve and AUC values for the CNN ((a) and (c)) and ArcFace ((b) and (d)), for UrbanSound and ESC-10,
respectively.

In TABLE II, it is presented the classification accuracy
for each acoustic source on UrbanSound database. Note that
sources are firstly sorted based on the percentage of non-
stationary audios of a given class and secondly on the average
log10(INSmax). As all signals of Dog Bark and Street Music
were objectively accessed as non-stationary, these sources
are placed at the top two rows. Engine Idling is the lowest
rank, because only 56.4% of the available acoustic signals are
non-stationary. The proposed Metric Learning with ArcFace
strategy achieves the highest average classification accuracy
of 76.5%. The metric learning outperforms the classic MFCC-

SVM, leading to at least 18.0 p.p. increment for SphereFace
and up to 20.4 p.p. for ArcFace.

In comparison with the competing CNN approach, the
proposed solution reaches higher accuracy values for all in-
dividually non-stationary and highly non-stationary acoustic
sources. In this case, the highest classification accuracy gain
of 5.2 p.p. is observed for Drilling with ArcFace, which
presents an objective measured non-stationary behavior on
96.9% of the database samples. It is important to note that
the Metric Learning ArcFace strategy achieves the highest
results for the five most non-stationary acoustics sources of
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Dog Bark, Street Music, Jackhammer, Drilling and Car Horn,
simultaneously. Moreover, the SphereFace outperforms on
Siren and Air Conditioner with 73.2% and 58.2% respectively,
while CosFace function presents the highest value of 70.1%
for Engine Idling.

The classification results for the ESC-10 dataset is presented
on TABLE III. In this case, ArcFace and SphereFace strategies
achieve the highest average classification accuracy of 85.3%,
which is a 1.8 p.p. increment over competing DNN. Note that,
for all non-stationary acoustic sources, the highest accuracy is
achieved by a Metric Learning solution. Furthermore, ArcFace
overcomes the competing methods on the majority of cases,
specially for the most non-stationary acoustic sources. These
results reinforce the capacity of the proposed metric learning
strategy to overcome the non-stationarity challenge on real
acoustic source classification.

As a further comparison between the classic CNN and
Metric Learning ArcFace proposed solution, Fig. 4 depict the
ROC curve and Area Under the Curve (AUC) for each source
verification task and datasets. The true positive audios relate
to a target acoustic class, whereas all seven remaining classes
are considered for the false positive rate evaluation.

In line with the previous result, the proposed approach
achieves a better AUC performance on three non-stationary
acoustic sources on UrbanSound (Jackhammer, Drilling and
Engine Idling) with and increment from 0.92 up to 0.93. As
the main goal of the proposed metric learning method is to
reach a higher classification accuracy for each acoustic source,
this approach is able to achieve an average AUC value of 0.96
which is 0.01 higher than the classic CNN strategy. Regarding
the ESC-10, both methods reach a similar overall average AUC
value. Moreover, in Fig. 4 the lower area under the curve
is 0.92 for the Jackhammer on UrbanSound, which indicates
that the metric method achieves good discrimination among
classes.

V. CONCLUSION

In this work, it was proposed a metric learning-based
approach for non-stationary acoustic source classification. The
solution adopted a convolutional neural network for embedded
feature generation with reduced size. The embedding gen-
eration was optimized on similarity constraints in order to
maximize intra-class and minimize inter-class distances using
the metric learning strategy. Experiments demonstrated that the
proposed solution outperforms the baseline system accuracy
for all non-stationarity acoustic sources, leading to an overall
average accuracy improvement on two largely used acoustic
sources datasets. Moreover, the proposed strategy is also able
to achieve a higher AUC values for non-stationary acoustic
source verification task.
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