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Training Barlow Twins with Small Batch Sizes by
Using a Queue of Previous Outputs
Pedro de Carvalho Cayres Pinto and José Gabriel Rodríguez Carneiro Gomes

Abstract— We present two methods based on Barlow Twins, a
self-supervised method, to improve training with smaller batches.
The first method randomly drops features from the output before
computing the loss to reduce the variance. The second method
introduces a queue of outputs from previous batches to improve
the loss estimate during training. The first method, with a batch
size of 64, achieves an accuracy of 64.1%, the second method,
with a batch size of 64 and 192 queued outputs, achieves an
accuracy of 65.4%, while the original method, with a batch size
of 256, achieves an accuracy of 66.0%.

Keywords— self-supervised learning, convolutional neural net-
works, deep learning

I. INTRODUCTION

Recent methods in self-supervised learning, such as [1]–
[7], have shown similar performance to supervised methods in
image classification tasks on ImageNet [8]. When comparing
their Top-1 accuracy on the ImageNet validation set with a
ResNet-50 [9] architecture, Barlow Twins [1] has an accuracy
of 73.2%, SwAV [5] has an accuracy of 71.8% (75.3%
with multi-crop), BYOL [6] has an accuracy of 74.3%, and
VICReg [7] has an accuracy of 73.2%, which are close to the
supervised accuracy of 76.5%.

For object detection and image segmentation, models pre-
trained on ImageNet with self-supervised techniques outper-
form the ones pre-trained with supervision. According to
[1], when using these pre-trained models as the base of the
Mask R-CNN [10] architecture, the bounding box average
precision (AP) is 39.3% with MoCo-v2 [4], 38.4% with SwAV,
and 39.2% with Barlow Twins, against 38.2% with a pre-
trained supervised network. Similarly, according to [1], in the
segmentation task, MoCo-v2, SwAV, and Barlow Twins have
a mask AP of 34.4%, 33.8%, and 34.3%, respectively, while a
pre-trained supervised network achieves 33.3% mask AP [1].

Despite these advancements, to achieve such a performance
the training is costly and requires more than 100 hours on 32
V100 GPUs to train 1000 epochs [1]. With a batch size of 256
these models can be trained with only four V100 16 GB GPUs
but we show that, with some modifications, we can reduce the
batch size to 64 and obtain similar performance training only
with two 1080 Ti 11 GB GPUs.
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The loss functions of these self-supervised learning methods
are often based on the idea that the output features from similar
images should also be similar, with a pair of images being
considered similar when they are both produced by a pair of
randomly sampled transformations applied to the same image
in a data augmentation process. Pairs of such similar images,
as well as their outputs produced by the network, are referred
to as the positive pairs.

From a batch of different images sampled from the dataset,
the augmentation process generates two matching batches so
that each image from the original batch has a transformed
version on each batch. Each of these batches are processed
by a network (possibly with the same weights, as in the case
with Barlow Twins), generating two batches of output feature
vectors.

In the contrastive methods, such as [2]–[4], the output
feature vectors are compared directly by cosine similarity, and
the cross-entropy loss, calculated for each sample, is smaller
when the positive pairs have higher cosine similarity and the
negative pairs have lower cosine similarity.

Unlike the contrastive methods, Barlow Twins [1] does not
compare the negative output pairs directly. Instead, this method
computes an estimate of the cross-correlation matrix between
the output vectors of the two networks and the loss is the
mean squared error between this cross-correlation matrix and
the identity matrix. With this loss, networks produce output
vectors where pairs of features are highly correlated when they
have the same index, and are from a positive output pair, and
where the pair of features are uncorrelated otherwise.

In this work, we introduce modifications on the Barlow
Twins method in order to alleviate the performance reduction
that is caused by training with small batch sizes. These
modifications aim at improving the optimization process by
reducing the loss estimate variance. We test these modified
Barlow Twins methods with a batch size of 64 on the ImageNet
dataset [8] and achieve performance similar to the performance
of the original Barlow Twins method with a batch size of 256.

While our work focuses on training convolutional neural
network with self-supervision, the advent of vision trans-
formers (ViT) [11] led to the development of self-supervised
techniques such as masked autoencoders (MAE) [12] and self-
distillation with no labels (DINO [13], DINOv2 [14]).

In Section II we review the Barlow Twins loss and propose
changes to improve the loss estimation with batches. The
implementation of these changes is detailed in Section III.
We apply this methodology by performing experiments on
Imagenet and CIFAR-10 [15] and discuss the results of these
experiments in Section IV. Finally, Section V presents our
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conclusions and directions for future work.

II. BACKGROUND

In the original Barlow Twins method, two twin networks
are trained (in the implementation, it is a single network, as
explained in the second paragraph of Section IV). At first, a
batch of images is sampled from the dataset. Then, for each
image in the batch, two transformations are sampled from the
augmentation process and applied to the corresponding image,
generating two versions of the batch. Each twin network
processes one of these batches and yields an output feature
vector for each image. A cross-correlation matrix between
these output vectors is computed. Finally, the loss is defined
as the mean squared difference between the cross-correlation
matrix and the identity matrix (with a hyperparameter λ
multiplying the off-diagonal error component). The idea is
that the loss is smaller when the output vectors from two
different transformations are similar (the diagonal elements of
the matrix are close to 1) and when the correlation between
features of different index from each output vector pair is low.

More specifically, if x is a batch of images from the
dataset, each of these images is transformed twice by the
data augmentation process, thus generating two batches of
transformed images, xA and xB . Each batch is processed by
the network fθ with parameters θ, thus producing the output
vector batches yA = fθ(x

A) and yB = fθ(x
B). These vectors

are normalized by subtracting from the mean and dividing
by the standard deviation along the image indices within the
batch (as is done in batch normalization). From these output
vectors, the correlation coefficients, Ĉij , are calculated as in
(1), where the first subscript of y is the index of the image
within the batch and the second subscript of y is the index
of the feature within the vector. Finally, the loss is calculated
from the cross-correlation matrix as in (2).
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Loss functions can often be computed directly as a function
of the output, possibly taking into consideration a target as
well. In such cases, usually, the true loss is the expected value
of the loss function over the generating process (in practice, the
dataset), while the estimated loss is the average loss function
computed over each output of a batch of samples. If the batch
{xi}ni=1 is sampled from the data distribution D, the fact that
this loss estimate L̂ is unbiased naturally follows from the
linearity of the expected value, as explained by (3).
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However, in Barlow Twins, due to the bias and variance
of the estimate of the correlation coefficients, the bias of
the estimated loss exists and is dependent on the batch size.
In fact, if Cij is the true correlation coefficient of an off-
diagonal element, we have (4) (this is just the well-known
equation, E[X2] = E[(X −E[X])2] +E[X]2, applied to Ĉij),
where σ2

Ĉij
is the variance of Ĉij , and bĈij

= E[Ĉij ] − Cij

is the bias of Ĉij , and the expected value is taken over the
distribution of samples from the image generating process, and
the distribution of transformation pairs for each sample.

E[Ĉ2
ij ] = σ2

Ĉij
+ (Cij + bĈij

)2 (4)

If, in a hypothetically ideal case, the output vectors from
the network, before normalization, follow a multivariate i.i.d.
normal distribution and the network generates the same output
vector for each sample image for every possible transfor-
mation, then the true cross-correlation matrix is the identity
matrix and the true loss is indeed 0, but the expected value
of the estimated loss is λd(d−1)

n−1 , for a batch size of n and
an output vector with dimension d. Each off-diagonal element
accounts for λ

n−1 and the diagonal elements are always 0. For
the interested reader, derivation of the distribution, bias and
moments of the correlation coefficient in the bivariate normal
distribution case is provided in [16].

In our experiments, training with batch sizes smaller than
128 diverged in the early epochs, which makes the original
method impractical to execute with constrained hardware
resources. We consider the hypothesis that the divergence is
caused by the noise of the loss estimation process and propose
two modified versions of Barlow Twins that make the method
viable with a batch size of 64.

III. METHODOLOGY

The first modified method drops out some of the features
of the output vectors before computing the loss. We remove
each feature with a 50% probability. This process reduces the
cross-correlation matrix to around 1/4 of its original size and
simplifies the loss for each batch. This should have an effect
on the magnitude and variance of the loss similar to increasing
the batch size from 64 to 256. While this modification does
not reduce the bias of each correlation coefficient, it does
reduce the variance of the loss, and is enough to lead to
convergence in our experiments. This idea can also be used
to explore higher dimensionality of the output vectors at a
reduced hardware cost. As observed in the Barlow Twins paper
[1], increasing the dimensionality of the outputs, at least up
to 16384, improves the accuracy of the finetuned model.

In the current implementation, we simply change the feature
at the selected index to zero, but a more efficient implementa-
tion should also reduce the output size, in order to reduce the
memory and time to compute the cross-correlation matrix.

The second modified method implements a queue, from
outputs from previous batches, and uses the queue and the
outputs from the current batch to compute a more precise
estimate of the cross-correlation matrix. This follows a similar
idea to the one in MoCo [3], [4], where a queue of previous
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outputs is used in conjunction with the batch outputs to
compute the contrastive loss, and in SwAV [5] in the small
batch setting, where the queue augments the batch outputs to
compute the assignments to the prototypes.

The output vectors, before batch normalization, of each
batch are pushed into the queue after they are calculated,
discarding the oldest output vectors in the queue. This is
done for both twin networks, so there are two queues. Each
queue is appended to the output vectors generated by one
network in the pair, before the batch normalization operation,
to compute the cross-correlation matrix. We use a queue size
of 192 and a batch size of 64, which simulates a batch size of
256 when computing the cross-correlation matrix. The queue
is initialized with an i.i.d. normal distribution with mean 0 and
standard deviation 1.

For clarity, it is useful to consider the trained networks
as being divided into two smaller networks. The first one is
the base network, such as a ResNet without the classification
layer, that produces the output features that are called the
representations. The second one is the projector network
which is composed, in this case, of three fully connected
layers that process the representations of the first network and
produce the output vectors. The first two fully connected layers
are followed by batch normalization [17] and ReLU, while the
output of the last layer is used to compute the cross-correlation
matrix. The whole architecture is randomly initialized.

As noted in [2], removing the projector network after
finishing the self-supervised training produces better results
in the classification task.

IV. RESULTS

We perform one experiment to compare three methods. The
first method is the baseline Barlow Twins with a batch size of
256. The second method uses a batch size of 64 and modifies
baseline by sampling (with a 50% chance) indices of the output
vectors to exclude from the loss computation at each training
step. The third method uses a batch size of 64 and uses a
queue of size 192 with outputs from previous batches, that is
concatenated to the current output batch in order to compute a
more precise loss. The 192 outputs in the queue complement
the 64 outputs in the batch to simulate an overall batch size
of 256.

In the 64 batch size settings, the models are trained with
two 1080 Ti 11 GB GPUs of a single machine. To train the
model with a batch size of 256 we use all four V100 16 GB
GPUs of a cloud instance. This training with 256 batch size
could not be realized in a single machine with four 1080 Ti
GPUs due to the memory requirement.

The base convolutional network architecture is a ResNet-
50 [9] and the dimensions of the three fully connected layers
in the projector network are 2048 × 8192, 8192 × 8192 and
8192 × 8192. The twin networks share their weights. That
is to say, they are implemented by a single network, which
processes both batches in the pair.

The image augmentation settings are the same as those used
in Barlow Twins [1] and BYOL [6]. The image is randomly
cropped. After that, with random chance, horizontal flipping,

TABLE I: Accuracy results on the ImageNet validation set
after finetuning the classification layer. The batch size is B
and the queue size is Q.

Method Top-1 Top-5

Barlow Twins (B = 256) 66.0% 86.8%
Barlow Twins (B = 64) with drop feature 64.1% 85.8%

Barlow Twins (B = 64) with queue (Q = 192) 65.4% 86.8%

color jittering, solarization and Gaussian blur are applied. The
images are resized to 224 × 224 and normalized along each
channel by subtracting the mean and dividing by the standard
deviation from the ImageNet train set.

The optimization algorithm is layer-wise adaptive rate
scaling (LARS) [18] on the weights and stochastic gradi-
ent descent (SGD) without weight decay on the biases and
batch normalization parameters, following [1]. In the baseline
method, the base weight learning rate1 is 0.4 and the base
bias learning rate is 0.0096, while on the method that drops
features and the queue method, the base weight learning rate is
1.0 and the base bias learning rate is 0.003. In all methods the
weight decay is 10−6, the momentum is 0.9 and λ = 0.0051,
following [1].

The self-supervised models train for 100 epochs on the
ImageNet train set, with a 10-epoch warm-up period, which
raises the learning rate linearly to its base value. After warm-
up, the learning rate follows a cosine decay learning rate
schedule that finishes with a learning rate of 1

1000 of the base
learning rate.

For classification, we include a 2048×1000 fully connected
layer on top of the representations of the pre-trained self-
supervised model (the projector network is removed), so that
we have one output for each one of the 1000 ImageNet classes.
We train this fully connected layer with the cross-entropy loss
on the ImageNet train set for 100 epochs with SGD, learning
rate of 0.3, weight decay of 10−6, momentum of 0.9 and
cosine decay schedule.

The Top-1 and Top-5 accuracy results on the ImageNet
validation set are shown on Table I. The baseline method
yields the best performance with an accuracy of 66.0% and
a Top-5 accuracy of 86.8%. The method with a queue shows
similar performance with an accuracy of 65.4% and a Top-5
accuracy of 86.8%. The method that drops features from the
outputs presents a reduction in accuracy in both cases, Top-1
and Top-5, with an accuracy of 64.1% and 85.8% respectively,
in comparison with the baseline Barlow Twins. The evolution
of the accuracy for each method, by epoch, is shown in Figure
1 and Figure 2.

The Barlow Twins loss is shown in Figure 3. At the final
epoch there is a gap of around 7.5% of the loss in the baseline
method between the baseline method with a batch size of 256
and the queue method with a simulated batch size of 256
(64 batch size plus 192 from the queue). Despite the gap, the
accuracy performance of the queue method is similar to the

1These learning rates are reported as in the Barlow Twins paper [1], but
we note that, like in the original code available at https://github.
com/facebookresearch/barlowtwins, the actual learning rate is
multiplied by b

256
, where b is the batch size.



XLI BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2023, OCTOBER 08–11, 2023, SÃO JOSÉ DOS CAMPOS, SP

0 20 40 60 80 100

55

60

65

Epoch

To
p-

1
A

cc
ur

ac
y

B=256
B=64 with Drop Feature
B=64 and Q=192

Fig. 1: Top-1 accuracy by epoch on the ImageNet validation
set.
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Fig. 2: Top-5 accuracy by epoch on the ImageNet validation
set.

baseline.
The classification training loss is shown in Figure 4. Despite

a similar performance in terms of classification accuracy, the
baseline method (B = 256) presents a lower loss than both
modifications (B = 64).

We also perform an experiment on the CIFAR-10 dataset
[15]. In this case, the images are 32 × 32, and we remove
solarization and Gaussian blur from the augmentations, but
the augmentation settings remain the same otherwise. The
input image channels are also normalized, using the mean and
standard deviation values from ImageNet for simplicity.

For the CIFAR-10 experiments, we use a single machine
with 1080 Ti 11 GB GPUs. The memory requirements are
low in this case, so there is no economy in terms of hardware
resources. We perform this experiment in order to verify that
the use of the queue improves the accuracy of the model for
small batch sizes.

Since the number of images in CIFAR-10 is much smaller
than in ImageNet (60000 in CIFAR-10 and more than one
million in ImageNet), we use a simpler architecture: the base
network is ResNet-18, and the three fully connected layers
in the projector have dimensions 512 × 2048, 2048 × 2048
and 2048 × 2048. To adapt the network to images with
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Fig. 3: Comparison of the Barlow Twins loss by epoch, on
the ImageNet experiment, between the original method with
batch size 256 and the queue method with a batch size of 64
and a queue of size 192. Since the number of dimensions of
the output vector and the number of samples used to compute
the cross-correlation matrix on the drop features method is
different from the other methods, the loss is not directly
comparable and is, thus, not exhibited here.
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Fig. 4: Training cross-entropy loss of the fully connected
classification layer.

smaller resolutions, the first layer, a 7×7 convolutional layer,
is replaced by a 3 × 3 convolutional layer, and the 2 × 2
max-pooling layer that follows this first layer is removed.
These modifications are the same as the ones in the MoCo-v2
implementation for CIFAR-10 [19].

We train four models with self-supervision on the CIFAR-
10 train set for 800 epochs with SGD. Three with the baseline
method and batch sizes of, 128, 32, and 16, with learning rates
of, respectively, 0.001, 0.00025, and 0.000125, and one with a
batch size of 16, a queue of size 112 (simulating a batch size
of 128) and learning rate of 0.000125. The weight decay is set
to 5× 10−4, the momentum is set to 0.9 and λ = 0.0051 for
all models. The learning rate follows a cosine decay schedule,
without warm-up.

For classification, we remove the projector network and
replace it with a 512 × 10 fully connected layer, since we
train to classify the 10 CIFAR-10 classes. The weights of the
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TABLE II: Accuracy results on the CIFAR-10 test set after
finetuning the classification layer. The batch size is B and the
queue size is Q.

Method Accuracy

Barlow Twins (B = 16) 87.0%
Barlow Twins (B = 32) 89.6%

Barlow Twins (B = 128) 90.0%
Barlow Twins (B = 16) with queue (Q = 112) 89.8%
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Fig. 5: Comparison of the Barlow Twins loss by epoch, on
the CIFAR-10 experiment, between the original method with
batch size 128 and the queue method with a batch size of 16
and a queue of size 112.

base network are frozen and we train the fully connected layer
with the cross-entropy loss on the CIFAR-10 train set for 100
epochs with SGD. The learning rate is 0.3, the weight decay
is 10−6, the momentum is 0.9, and we use the cosine decay
schedule.

The results of this method are summarized in Table II. In
this experiment, the best performing method is the baseline
with a batch size of 128, which has an accuracy of 90.0%.
The inclusion of the queue improves the accuracy with batch
size 16 from 87% to 89.8%, reaching a performance similar
to the baseline method on larger batch sizes.

Similar to the ImageNet experiment, there is a gap, this time
of around 14.3% between the loss with batch size of 16 and
queue of 112 and the loss with batch size of 128. This can be
seen in Figure 5.

V. CONCLUSIONS

Although the method that drops features does not reach the
same performance as the original method on ImageNet, it does
converge with batch size 64 with a reasonable performance. It
also has the potential to be used in cases of higher dimensional
outputs to decrease the memory requirements.

The queue method performs well, only slightly inferior to
the original method on ImageNet. If this performance gap does
not increase in longer trainings (with more epochs), then one
might investigate whether the results of the original Barlow
Twins paper can be approximated, with more modest hardware
requirements.

In particular, these improvements allow us to train models
with good performance on images with 224× 224 resolution

using only two 1080 Ti 11 GB GPUs, whereas more than four
such GPUs are needed to train with the standard Barlow Twins
method with a 256 batch size.
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