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Abstract— This paper analyzes Multichannel Blind Deconvolu-
tion (MBD) techniques over noiseless and noisy data. We employ
both REgularization by Denoising (RED) and the multichannel
blind criterion as components of an approach to regularize the ill-
posed inverse problem of image deblurring. Tests with different
optimization techniques, such as fixed step, global search and
the Barzilai-Browein step direction were performed in synthetic
data and the results were compared with other techniques in the
literature. Low Root Mean Squared Error (RMSE) kernels and
image estimates were achieved in the deblurring of noisy images.
This was achieved by combining fixed-step RED and the global
search method in an alternating optimization algorithm.

Keywords— Processing, Multichannel Blind Deconvolution, In-
verse Problems, Non-Linear Optimization, SIMO systems

I. INTRODUCTION

Blind deconvolution is a thriving research topic inside the
scope of inverse problems [1], [2], [3]. In signal processing,
the necessity of solving such problems arises when systems
require the estimate of an unknown entity from its interactions
with the environment and within the processing pipeline itself.

Linear interactions between signals and systems are de-
scribed through the operation of convolution. In seismic
analysis, as exposed in [1], the reflectivity function of the
subsurface, which is related to its geological properties, is
usually estimated through a deconvolution algorithm. In fields
like astronomical and microscopical imaging [4], [2], often
some deconvolution technique is applied over the acquired
images in order to reconstruct a picture closer to reality. In
satellite and cosmic imaging, in general, the time dependent
configuration of particles in the atmosphere allow the use of
MBD techniques for deblurring purposes when the pictures
are taken with the correct sample rate [5].

Although recent works in MBD proposed new regulariza-
tion techniques, such as [6] [7], there is a lack of models
in literature that incorporate prior information about natural
images. Recent work uses convolutional neural networks to
encode such information through real data, as can be seen in
[3]. Nevertheless a regularization model that mathematically
induces solutions in the natural images domain can be a useful
tool for deconvolution purposes. As the denoiser technology
further advances, Romano et al. describe in [8] how to take
advantage of such systems to solve inverse problems with the
RED algorithm. In this context, the present paper combines
modern optimization algorithms for MBD to the RED regu-
larization.
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II. NOTATION

Lower case letters such as yi, ki and x represents images,
that are mathematical equivalent to matrices or 2D continuous
signals depending on the context. Since the proposed technique
is used in a multichannel framework, the sub-indices i and j
denotes the i-th or j-th samples of the multichannel array. At
the same time, super-indeces (like xl) indicate the l-th term
of a sequence.

The set of multiple image samples or blurring kernels are
represented by lower case letters and a "vector hat" indication,
to highlight the multidimensional array-like structure. The
symbols k⃗ and y⃗ represent respectively the array denoted by
all the blurring kernels and the array of all captured image
samples and y1, . . . , ym ∈ y⃗.

Upper case letters such as Yi, Ki, Y⃗ and K⃗ are the Fourier
transforms (FT’s) of their lower case counterparts. The FT of
an array represents the transformation applied to each entry of
the array. The symbol “A∗”represents the complex conjugate
of the matrix A. The discrete convolution between two signals
x and y is represented by the expression x∗y, and the element-
wise product between two matrices (X and Y ) is expressed
as X · Y .

III. MATHEMATICAL MODEL

The multichannel model can be represented as the degra-
dation of an image signal x of a set composed by m ≥ 2
blurring kernels {ki}mi=1 resulting in the set of m samples
{yi}mi=0 | yi = x ∗ ki in a noiseless scenario.

Using known properties of the convolution it can be seen
that for a given acquired image yi = x ∗ ki | ki ∈ k⃗:

kj ∗ yi = kj ∗ (ki ∗ x) = ki ∗ (kj ∗ x) = ki ∗ yj (1)

In [9] it was shown that, based on (1), the estimation of
the blurring kernels of each channel can be achieved by
minimizing the cost function:

L(y⃗, k⃗) =
∑
i ̸=j

||ki ∗ yj − kj ∗ yi||22 (2)

So the optimization task to recover the original signals be-
comes:

min
k⃗

L(k⃗, y⃗)

s.t. ||ki||2 = 1
(3)

Problem’s (3) solution is the set of kernels that minimizes
the cross-channel error in (2). The norm constraint ||ki||2 =
1 assures that the found kernel is proportional to the actual
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solution up to a scalar constant (scaling ambiguity), as stated
in [9].

Most of the complexity of computing L arises from the
discrete convolution, operation equivalent to a matrix mul-
tiplication with complexity c > O(n2), as stated in [10].
One approach to reduce the overall complexity is to use the
convolution theorem, which, by transporting the signals to the
frequency domain, transforms the convolution operation in a
point-wise product, as discussed in [11] for the z-transform. In
this paper, we’ll use a similar approach using the Fast Fourier
Transform (FFT) of the images and blurring kernels.

A. Noiseless model

To solve (3) it is necessary to compute the gradient of the
cost function in (2), which is done as follows:

∇ki
L =

∑
i̸=j

∂

∂ki
||ki ∗ yj − kj ∗ yi||22

=
∑
i ̸=j

2
∂

∂ki
(yj ∗ ki)T (ki ∗ yj − kj ∗ yi)

= 2
∑
i̸=j

F−1{Y ∗
j · (Ki · Yj −Kj · Yi)} (4)

Using ∇ki
L defined in (4), problem (3) can be solved by some

gradient descent algorithm.

B. Noisy data model and RED regularization

In order to further improve the deblurring capabilities of
the proposed system, the cost function should incorporate
the image reconstruction error. We also propose the RED
regularization term to be included in the problem model. By
introducing both regularization terms in (2), we obtained the
following cost function with penalty terms µ and λ:

L(x, k⃗, y⃗) =
∑
i ̸=j

||yj ∗ ki − yi ∗ kj ||22

+
µ

2

m∑
i=1

||x ∗ ki − yi||22 + λxT (x− f(x))

(5)

The last term in (5) is the RED regularization, which favors
solutions x that are orthogonal to the denoised residual x −
f(x), where f(·) is a denoiser. Romano et al. states in [8] that
if f satisfies some conditions, then ∇xx

T (x − f(x)) ≈ x −
f(x). By this approximation the gradient of the cost function
in the x domain becomes:

∇xL =
µ

2

m∑
i=1

∂

∂x
||x ∗ ki − yi||22 + λ(x− f(x))

= µ

m∑
i=1

F−1
{
K∗

i · (X ·Ki − Yi)
}
+ λ(x− f(x)) (6)

The steepest direction given for the cost function in (5) in
the kernel domain is given by:

∇ki
L = F−1{Y ∗

j · (Ki · Yj −Kj · Yi)}

+ µ

m∑
i=1

F−1
{
X∗(X ·Ki − Yi)

} (7)

IV. METHODOLOGY

In this section, two main aspects of the methodology were
discussed into two subsections: the algorithms used to achieve
the deconvolution and its implementation details.

A. Algorithms

1) Fixed Step Size: The fixed step size approach consists
in setting a constant value to the gradient vector in the descent
process. The iteration of two successive values of the sequence
{x}nk=0 is given by the expression: xi+1 = xi − ϱ∇L with ϱ
being a constant given by: 0.5/||∇L||2. Although this is not
a very usual minimization strategy, since the ℓ2-norm of the
gradient vector modulates the distance traveled in each step;
this heuristic (dividing the gradient vector by its norm) was
developed during the experiments to avoid trivial solutions and
numerical divergences to infinity.

2) Barzilai-Browein (BB): The gradient descent direction
proposed by Barzilai and Browein in [12] uses two distinct
step sizes to approximate the Newton’s method direction.
Since the computation of the Hessian matrix and its inverse
can be very costly, the algorithm consists in approximating
the second derivative by the difference between the gradient
computed at the current and last iteration of the descent. The
steps σ′ and σ′′ (which can be used interchangeably) are
calculated by the following equations:

σ′ =
< vec(∆x), vec(∆g) >

< vec(∆g), vec(∆g) >
(8)

σ′′ =
< vec(∆x), vec(∆x) >

< vec(∆x), vec(∆g) >
(9)

Where the operator “< · , · >” represents the scalar prod-
uct between the vectorized matrices ∆x and ∆g which are
respectively given by:

∆x = xl − xl−1 (10)

∆g = ∇f(xl)−∇f(xl−1) (11)

3) Global Search: This line search method consists in
partitioning the search direction (steepest descent) into δ = 20
intervals between 0 and ||∇L||2. These values were defined
by fine-tuning the parameters during the execution step, where
a complexity × performance trade-off was the main tradeoff,
since the cost function is evaluated δ times.

4) Fixed point RED for noisy data: To derive a fixed-point
strategy to minimize the cost function in (5), we follow [8]
and first assume that the denoised images in two subsequent
iterations are approximately the same. Thus, the RED term in
(5) can be replaced by (xl)T

(
xl−f(xl−1)

)
. Using the gradient

in (6), we calculate the fixed-point solution to ∇xL = 0 as:

∇xL(xl, xl−1) =
µ

2

m∑
i=1

F−1
{
K∗

i · (X l ·Ki − Yi)
}

+ λ(xl − f(xl−1)) = 0

(12)

By transposing the convolution and differential operators to
the frequency domain and isolating xl it is possible to find
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Fig. 1: Picture used for benchmark testing.

an iterative formula that converges to the fixed point where
∇xL(x∗) = 0 =⇒ {xl}∞l=0 → x∗, see [8]. Once rearranged,
the described iterative formula becomes:

xl = F−1

{
λF{f(xl−1)}+ µ

∑m
i=1 K

∗
i Yi

λ+ µ
∑m

i=1 K
∗
i Ki

}
(13)

V. RESULTS

The results presented in this paper are gathered into two
subsections: Noiseless and noisy synthetic data. Both sections
evaluate and discuss the interesting emerging solutions for
each case and isolates the different aspects of each technique
as well as simulation details about the experiments.

A. Simulation

The synthetic data was generated by using the starfish
picture in Figure 1 convolved with different pairs of blurring
kernels. Additive White Gaussian Noise (AWGN) was synthe-
sized to fit a 30 dB SNR level.

The simulations were divided into two main categories:
deblurring with noiseless synthetic data and deblurring with
noisy synthetic data. For the noiseless tests, only the mul-
tichannel criterion - Equation (2) - was used to model the
system. As shown in [9], the convergence rates of different
line search methods were compared for 105 gradient descent
iterations. This rate can be evaluated by the inspection of
Root Mean Squared Error (RMSE) between real and estimated
image as well as real and estimated kernels.

To deblur noisy inputs, an alternating optimization ap-
proach was taken: within 100 external "macro-iterations", two
minimization processes are successively performed. A fixed
point RED minimization in the image reconstruction domain,
with 500 "micro-iterations", followed by a classical fixed step
steepest descent algorithm in the kernel reconstruction domain
with the same number of micro-iterations. The regularization
constants in Equation (5) were set to λ = 0.5 and µ = 1.0

B. Noiseless Data

Figure 2 shows the RMSE between the original and esti-
mated kernels at each iteration. In the noiseless case, it is
interesting to see an emerging pattern: the least computational
complex search algorithms (fixed step) achieves competitive
performances when compared to the most computationally
expensive algorithm (the global search approach). However the
latter method produces a more stable behavior in the descent.

Figure 3 shows the estimates of the kernel and image
reconstruction for the different line search approaches for
100,000 gradient descent iterations. One can see that both fixed

Fig. 2: RMSE for each method for 100’000 iterations.

step and Global search techniques achieve nice reconstructed
image while the Barzilai-Browein method achieved a slightly
larger RMSE than the other algorithms by the same number
of iterations.

The image reconstructions shown in Figure 3, for the
noiseless tests, were obtained by the division of the Fourier
Transforms of the estimated kernels by their respective blurred
picture. Mathematically this procedure can be written as x̂i =
F−1

{
Yi/K̂i

}
. For the noisy simulations, x̂ was obtained by

directly optimizing the cost function.

C. Noisy Data

Figures 5 and 4 illustrate the progression of the gradient
descent sequences for both the cost function and RMSE for
two different sets of 4 × 4 blurring kernels: a simplified set,
characterized for the impulse and anti-impulse, and a randomly
generated set. Both cost functions decay in a very step angle
at the beginning of the process for all kernel scenarios. By
evaluating the graphs in Figures 4, one can notice that kernel
domain RMSE is monotonically decreasing, behavior which
reveals stability in the algorithm. However the RMSE of the
image reconstruction shows an average descending behavior,
but no monotonicity is achieved. Figure 5 reveals that the three
interest costs are monotonically decreasing for the simplified
kernels.

By evaluating the outcomes shown in Figures 6a and 6b, one
can see that, for the simplified kernel case, both the kernel and
image reconstructions are close enough to the their references.
For the random kernels another outcome is observed: the
image reconstruction converges to a close representation of
the reference image, moreover the kernel estimates seems to
converge to local minima of the cost function, compromising
convergence of the kernel reconstructions.

VI. CONCLUSIONS

When observing the proposed algorithm for the noiseless
synthetic images, it is interesting to notice how gradient
descent performs well for the deblurring purpose. In some
cases the different line search methods can improve radically
the behavior of the descent. Usually a trade-off between
computational cost and numerical stability have to be made,
but, as seen in the results, there is no great differences between
approaches. In this sense we experienced better deconvolution
results with the least complex method.
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(a) Outcome for Kernel 1 (fixed step) (b) Outcome for Kernel 2 (fixed step)

(c) Outcome for Kernel 1 (global search) (d) Outcome for Kernel 2 (global search)

(e) Outcome for Kernel 1 (BB method) (f) Outcome for Kernel 2 (BB method)

Fig. 3: Outcome for the different methods for 100,000 iterations and two blurring kernels.

Fig. 4: Cost value (left) and RMSE of kernel and image estimates for the simplified set of kernels (right) per iteration.

Nevertheless, noiseless synthetic data represents an ideal-
ized scenario. Most real images carry some level of additive
noise and deconvolution models must deal with such adversi-
ties. The proposed algorithm considers noise in its formulation
and uses denoiser technologies to assist in the regularization
of the problem. As the use of multiple sensors becomes more
and more accessible and the technologies behind denoisers
are further developed, efforts in unifying these and other

technologies should be done by the scientific community. This
paper tries to contribute in this sense by showing how different
techniques (such as MBD and RED) can complement one
another.

In order to further advance the results shown in this paper,
work is being developed by evaluating other RED implementa-
tions besides the fixed point approach, such as steepest descent
and the Alternating Direction Method of Multipliers (ADMM)
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Fig. 5: Cost value (left) and RMSE of kernel and image estimates for the randomized set of kernels (right) per iteration.

(a) Obtained reconstructions from the image and
the simplified kernels.

(b) Obtained reconstructions from the image and
the random kernels.

Fig. 6: Outcomes from noisy deconvolution.

methods. Testing the deblurring capabilities of the proposed
approach in real data, evaluating different initialization tech-
niques - taking into consideration application specific kernel
and priors - are also future perspectives for the presented work.
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