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Abstract— Locating transmitted signals in antenna arrays has
been a widely studied topic in signal processing literature.
The near-field setting, particularly relevant when considering
an extremely large antenna array (ELAA), poses a significant
challenge as it deviates from the conventional steering vector
model often used in array signal processing. In this paper, we
propose an innovative method that combines adaptive subspace
estimation with sub-array architecture to accurately locate users
in near-field scenarios. The integration of sub-array techniques
for ELAA and adaptive subspace approaches provides remark-
able advantages, such as reduced computational complexity
and improved performance. Our method is compared to well-
established techniques in the literature, with evaluations based
on root mean square error (RMSE) and cumulative distribution
functions (CDFs) to characterize the statistical behavior of each
method. The results demonstrate that our proposed method
outperforms existing approaches in terms of precision.

Keywords— Near-Field, DOA, User’s Location, Sub-array,
ELAA.

I. INTRODUCTION

The development of methods to locate radiated sources
through passive sensor arrays has been a major research target
in the area of array signal processing. The direction of arrival
(DOA) is important for obtaining direction information, which
is a useful parameter for acquiring the position [1]. However,
the estimation of this parameter is usually assumed to be in the
far-field region, while very few works consider the near-field
region [2]. The behavior of near-field electromagnetic radiation
predominates close to the antenna [2], i.e., for sources located
close to the array, the shape of the incident wavefront is
spherical, varying nonlinearly with the position of the array.
As a result, conventional DOA estimation methods, designed
primarily for the far-field, become inapplicable [3].

Investigating DOA in near-field scenarios presents a mul-
titude of possibilities, especially when considering extremely
large antenna arrays (ELAA), a common feature in several key
candidate technologies for sixth-generation mobile networks
(6G). As the number of antennas and carrier frequency in
future 6G systems increase significantly, the near-field region
of ELAA will expand by orders of magnitude. Consequently,
near-field communications will become crucial for future 6G
mobile networks, where the distinct propagation model must
be considered [4].

The importance of pinpointing near-field sources has been
acknowledged, leading to the development of various ap-
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proaches, including the Maximum Likelihood method [5], [6],
Multiple Signal Classification (MUSIC) [7], [8] and Estima-
tion of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) [8], [9]. Unfortunately, these methods come with
certain limitations. For instance, most of them involve either
multidimensional search or higher-order statistics (HOS) and
consequently require a sufficiently large number of repetitions.
In [10] and [11], the authors suggest a one-dimensional (1-
D) approach based on second-order statistics with symmetric-
sub-array partition to locate multiple near-field sources. This
method avoids the need for computing high-order statistics,
parameter pairing, or multidimensional search. The steering
vectors of the appropriate sub-arrays are divided into two sym-
metric sub-arrays, leading to a rotational invariance property
resembling a distant field in the signal subspace. However,
the ESPRIT used in [10] and 2D-IFFT with fisher information
(FIM) analysis in [11] for DOA estimation necessitate a large
amount of data, resulting in high computational costs.

This paper introduces a groundbreaking approach to localiz-
ing user positions in the near-field region using ELAA. We em-
ploy an adaptive algorithm, PAST (Projection Approximation
Subspace Tracking) [12], to monitor changes in the ELAA.
This algorithm is computationally efficient, as it has a recursive
update formula that eliminates the need for computationally
intensive operations such as matrix inversions or eigenvalue
decompositions [13]. Furthermore, it is worth noting that the
precision of the estimation is influenced by not only the
factors mentioned earlier but also by the number of samples
utilized for the estimation process and the dimensionality
of the subspace. Enhancing the number of samples while
maintaining a reduced-dimensional subspace can significantly
enhance the accuracy of the estimation, as exemplified in
the findings of this paper, clearly illustrated through the
cumulative distribution function (CDF) curve. Our approach
entails two primary steps: 1) Applying the PAST algorithm
to symmetric sub-arrays for DOA estimation. 2) Employing
the estimated angle of arrival from each sub-array for precise
range estimation through the intersection of lines method. In
Section IV, we compare the performance of our PAST method
compared to the 2D-IFFT [10] and ESPRIT [11] methods.

II. SIGNAL MODEL

Consider a scenario in which a base station (BS) is situated
near a single-antenna user equipment (UE) with an unknown
position, denoted as x = [x, y]T , where superscript {·}T
represents the transpose. The BS is equipped with an N + 1-
element linear antenna array, with a spacing of ∆ between
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Fig. 1. In a near-field scenario with a transmitting source and a receiver array,
the phase across antenna elements changes nonlinearly, while in a spatial wide-
band setting, the delay across elements varies significantly [11].

each element. The array center acts as the phase reference
point and the locations are represented by xn = [n∆, 0]T ,
where n ∈ {−N/2, . . . , N/2}, as shown in Fig. 1 [11].

The UE transmits to the BS an OFDM signal with a power
of Pt and a total bandwidth of Wb = (K + 1)∆f . Here,
∆f represents the spacing of the subcarrier and K + 1 is
the number of subcarriers. Due to a discrepancy in local
oscillators, the UE has a known clock bias, denoted B.

Let dn = |x−xn| represent the distance between the UE and
the n-th sensor. For convenience, let k ∈ {−K/2, . . . ,K/2}
denote the index of the k-th subcarrier. The signal received
by the n-th sensor can be expressed as follows, according to
[11]:

Yn[k] =

L∑
l=0

αn,ls[k]e
−j 2π

λ ϵn,l[k] + wn[k], (1)

where s[k] is the pilot symbol allocated to the k-th subcarrier
and term wn[k] denotes complex zero-mean Gaussian noise
with a variance of N0/2. The complex channel gain at antenna
n with respect l-th path is characterized by αn,l = ρn,le

jψn,l ,
where ρn,l = λ/(2πdn,l) and ψn,l is the random phase
uniformly distributed with a variance of 2π. If l = 0, the
parameter is associated with the line-of-sight (LOS) compo-
nent; otherwise, for l > 1, the parameters are associated with
the non-line-of-sight (NLOS) components.

The parameter ϵn,l represents the phase at antenna n con-
cerning the l-th path. Considering the array center as the phase
reference point (N = 0) and the center subcarrier k = 0, the
phase ϵn,l[k] at any antenna n and any subcarrier k can be
expressed as:

ϵn,l[k] = (dn,l − d0,l) + k
δn

(K + 1)Tsfc
, (2)

where Ts = 1/Wb. The first term, dn − d0, represents the
difference in path length concerning the center antenna. The
second term, k δn

(K+1)Tsfc
, depends on the absolute delay δn

and increases with the subcarrier index.
Most papers in the existing literature primarily focus on the

far-field regime. In such a case, the difference in distances for
linear arrays, dn − d0 =

√
d20 + n2∆2 − 2d0n∆cos(θ)− d0,

can be approximated as dn−d0 ≈ −∆cos θ by using a Taylor
expansion around z = n∆/d0 = 0.

We assume near-field operation when the distance between
the antennas is between 0.62

√
(N∆)3/λ and 2(N∆)2/λ,

where the curvature of the electromagnetic wave is significant.
Additionally, we assume narrow-band operation when N∆ ≪
c/Wb, meaning that the signal delay between the antennas is
not resolvable [6].

Under these assumptions, the phase, as described in [14],
can be expressed as:

ϵn,l[k] = dn,l + (krf − 1)d0,l − krfB, (3)

where rf = ∆f/fc and B is a certain bias due to discrepancy
between local oscillators. We can generalise the signal model
of Eq. (1) to the matrix model:

Y =

L∑
l=0

AlV:,lF
H
:,lS+W, (4)

where V ∈ CN+1×L+1 contains the array response to each
path, so the (n, l)-th element is Vn,l = e(−ȷ

2π
λ (dn,l−d0,l)) and

the superscript {·}H represents Hermitian transpose. Here, dn,l
is the distance between the n-th antenna element and the point
scatterer. For l = 0, dn,0 is the distance between the n-th
antenna and the user. The L + 1 × L + 1 diagonal matrix
Al = diag (α0,l, α1,l, . . . , αN,l). The matrix F ∈ CK+1×L+1,
and its (k, l)-th element is Fk,l = e(ȷ

2π
λ ((krf−1)d0,l−krfB)).

III. NEAR-FIELD USER POSITION ESTIMATION

For DOA and range estimation, we consider ELAA consist-
ing of Nm sub-arrays, which results in the associated steering
vectors of each sub-array exhibiting a far-field-like rotational
invariance property in the signal subspace. By leveraging
this characteristic, we can decompose the joint 2-D problem
into two separate 1-D estimations. Initially, we utilize the
sub-arrays to estimate their respective DOAs. We use these
estimates to trace lines originating from the sub-arrays. The
intersection point of these lines corresponds to the position of
interest.

We partition the rows of Y in Eq. 4 into non-overlapping
sub-arrays, each containing M elements. From the near-filed
border ||x|| < 2(N∆)2/λ, we establish an expected distance
d̄, which consists of the maximum range that we expect to
find a user equipment and use near-field maximum distance to
obtain

M ≤
√
d̄λ/(2∆2). (5)

The sub-array m corresponds to the observations at antennas
(m− 1)M +1 through mM , with array center x̃m = xN/2 +
[∆((m)M + 1 +M/2, 0]T . In this case, the indexing for m
starts at 1. The total number of sub-array is Nm = ⌊N+1

M ⌋,
assuming N is divider by M .

Each sub-array collects its signal from its respective antenna
sub-array to process them and extract the subspace. The
received signal at the mth sub-array is defined as Ym ∈
CM×K+1. For subspace estimation, we first remove the pilot
contribution by performing the following operation:

Ŷm = YmSH(SSH)−1. (6)

Once the pilot is removed, the signal is processed by the
adaptive algorithm of subspace estimation. After that, we can
use the rotational invariance of the subspace to extract the
angle. The method is detailed in the subsequent subsection.
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A. DOA Estimation
Leveraging the rotational invariance inherent to each sub-

array, we employ the PAST algorithm to estimate their respec-
tive subspaces. Once convergence is reached, this algorithm
is consistently extended to successive sub-arrays, utilizing
computations grounded in the final subspace estimate derived
from the preceding sub-array (designated as m− 1).

The PAST estimation consists of an interpretation of the
signal subspace as the solution of a projection-like uncon-
strained minimization problem, which is solved using recur-
sive least-squares approaches by appropriately approximating
the projection. The dominant subspace estimation consists in
minimizing the approximated scalar cost function [12], [13]:

J(Um) = E

{∥∥∥Ŷm −UmUH
mŶm

∥∥∥2} . (7)

Suppose that Um = ÛmQ represents a subset of eigen-
vectors for the covariance matrix C = E{ŶmŶH

m}, with
Ûm ∈ CM×r(r < M) and r being the rank. The matrix
Q ∈ Cr×r can be considered an arbitrary unitary matrix.
When the cost function J(Um) reaches its lowest possible
value, Ûm will not consist of any eigenvectors, but rather the
r most significant ones [12].

To minimize the cost function J(Um), we employ the
well-established RLS algorithm. This can be achieved by
reformulating the cost function as follows:

J ′(Um(k)) =

k∑
i=1

βk−i
∣∣∣Ŷm(i)−Um(k)UH

m(k)Ŷm(i)
∣∣∣2 .

(8)
In this case, an exponentially weighted sum with the forgetting
factor β replaces the expectation operator. When the forgetting
factor is set to 1, all samples receive equal weight, ensuring
that the previous data are not forgotten. By adjusting the
forgetting factor to a value between 0 and 1 (0 < β < 1), the
resulting algorithm can be used to track nonstationary changes
in the sources, as outlined in [13].

We can modify the cost function in Eq. (8) by approximating
UHŶm(i) as UH(i − 1)Ŷm(i). This approximation results
in an alternative cost function:

J ′′(U(k)) =

k∑
i=1

βk−i
∥∥∥Ŷm(i)−Um(k)UH

m(i− 1)Ŷm(i)
∥∥∥2 .
(9)

By defining Ŷ′
m(i) = UH

m(i − 1)Ŷm(i), we can further
simplify the expression as follows:

J ′′(Um(k)) =

k∑
i=1

βk−i
∥∥∥Ŷm(i)−Um(k)Ŷ′

m(i)
∥∥∥2 . (10)

Similar to the cost function of the RLS method, this cost
function is quadratic. The only distinction is that an error
vector e(k) is required in this instance rather than an error
scalar e(k). We conclude that we may approximately minimize
the original cost function J(Um) by using RLS with the input
signal Ŷ′

m(k) = UH
m(k−1)Ŷm(k) and the desired signal Ŷm.

Consequently, the PAST algorithm may be summarized in the
Algorithm 1 [13]. The variables h(k) and g(k) are utilized in
the equations to calculate the RLS in between steps.

Algorithm 1 The PAST algorithm for tracking the signal
subspace

If m = 1: Initialize P(0) and U(0) randomly and appro-
priately. If m > 1: Initialize using the estimates from the
(m− 1)-th sub-array.

for k = 1, 2, ... do
Ŷ′
m(k) = UH(k − 1)Ŷm(k)

h(k) = P(k − 1)Ŷ′
m(k)

g(k) = h(k)/

[
β +

(
Ŷ′
m(k)

)H
h(k)

]
P(k) = β−1tri

{
P(k − 1)− g(k)hH(k)

}
e(k) = Ŷm −U(k − 1)Ŷ′

m(k)
Um(k) = Um(k − 1) + e(k)gH(k)

end for

To ensure that the matrix P(k) ≈ C−1(k) is symmetric,
we use the notation tri· to indicate that only the upper trian-
gular portion of the argument is calculated,and its transpose
is replicated to the lower triangular part. As a result, the
algorithm avoids the need for any matrix inversions, with
the most complex operation being scalar division [12]. The
interested reader can find the proofs in [15].

It is essential to understand that the converged Um does not
directly contain the eigenvectors of the correlation matrix. The
reason behind this is that the cost function, once minimized,
does not lead to a unique solution. In other words, there could
be multiple Um matrices that minimize the cost function, and
they might not necessarily correspond to the eigenvectors of
the correlation matrix. Nonetheless, the product UmUH

m is
unique, and it represents the signal subspace projection matrix.

The columns of Um that minimize J(Um) constitute an
orthonormal basis for the signal subspace generated by the
dominant eigenvectors r of the correlation matrix. Conse-
quently, it is feasible to determine the angle from the most
representative column, which corresponds to the first column
of the Um matrix. This can be done by rewriting it in the
form of two vectors: u1 = [e−jω0 , . . . , e−jω(M−2)] and u2 =
[e−jω1 , . . . , e−jω(M−1)]. Given the steering vector for a linear
array, ωi = 2π dλ i cos θ, it follows that ωi−ωi−1 = 2π dλ cos θ.
Therefore, we can estimate the θm of a sub-array as:

θ̂m = cos−1

(
λ

2πMd

M−1∑
i=1

arg (diag[u∗
1]u2)i

)
, (11)

where arg (diag[u∗
1]u2) yields a vector containing the argu-

ments of the complex number entries of the vector diag[u∗
1]u2.

B. Range estimation

Two critical parameters are required to determine the lo-
cation of a UE: the angle of arrival of the signal and the
distance between the user and the antenna. Having presented
a method for estimating the angle, we utilize this parameter to
mathematically express a line originating from two sub-arrays.
We then calculate the intersection point of the sub-array lines,
following a similar approach as presented in [11] and [10].
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Line intersections occur when two or more lines converge at
a shared point. In this context, we consider the lines as the dis-
tances we aim to determine, and the common point represents
the UE with coordinates x = [x, y]T [16]. Considering the
relatively stable angles and distance values across sub-arrays,
our emphasis is on the angle and distance of both the initial
and final sub-arrays. This enables us to succinctly represent
the coordinates as follows:

x =
x̃A · tan(θ̂A)− x̃B · tan(θ̂B)

tan(θ̂A)− tan(θ̂B)
(12)

y = x · tan(θ̂A)− dA · tan(θ̂B), (13)

where, x̃A represents the center of first sub-array, x̃B denotes
the center of last sub-array, θ̂A refers to the angle estimated
by PAST for first sub-array, and θ̂B corresponds to the angle
estimated by PAST for last sub-array. Incorporating both
the angle and range estimation methods, we summarize the
proposed user location Algorithm 2 for sub-array localization.

Algorithm 2 Sub-array Localization
Assume the number of antennas per sub-array as in Eq. 5.
Select two sub-arrays to trace the lines. Choose the first and
the last ones.
for m = {1,M} do

Collect Ym.
Verify the most recent estimate of Um.
Obtain Um using the PAST Algorithm 1. If no previous

estimate of Um exists for other sub-arrays, initialize as a
zero matrix.

Estimate θ̂m using Eq. 11.
Calculate the center of the sub-array: x̃m = xN/2 +

[∆((m)M + 1 +M/2, 0]T .
end for
Calculate x and y using Eq. (12) and Eq. (13).
Determine the UE position as x = [x, y]T .

It is essential to highlight that the range estimation, which
relies on the curvature of the electromagnetic wave, is not
influenced by the bias B. This stands in contrast to the use of
pilots spread across the frequency domain for delay estimation.
Furthermore, it is possible to combine both techniques to
estimate the bias B more effectively.

IV. NUMERICAL RESULTS

We consider a scenario at a carrier fc of 28 GHz (λ ≈
1.07 cm), a bandwidth W of 100 MHz, c = 0.3 m/ns N0 =
4.0049×10−9 mW/GHz, a transmit power Pt of 1 mW (with
E {|s[k]|}2 = Pt/W ) and K+1 = 257 subcarriers with QPSK
pilots. The UE has bias B = 20 m. The array has N+1 = 129
elements spaced at λ/2, corresponding to a total size of 69.11
cm and a far-field distance of 89 m. To test the performance
of the algorithm, 500 Monte Carlo simulations are performed.

To validate the effectiveness of the method proposed in
this paper (PAST), including an enhanced variant (PAST with
SVD-based initialization of the first sub-array), we conduct
a comparative analysis. We contrast the RMSE and CDF

10−1 100 101 102
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R
M
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[m

]

UE location 2D-IFFT

UE location ESPRIT

UE location PAST and SVD

UE location PAST

Position Error Bound - PEB

Fig. 2. RMSE curve of the method proposed in this paper PAST, an enhanced
variant PAST and SVD, 2D-IFFT [11] and ESPRIT [10] with respect the user
distance.

curves with established techniques from the literature, 2D-
IFFT [10] and SPRIT [11]. All estimators employ the sub-
array approach and are tested in a multipath propagation
setting that includes both LOS and NLOS components. We
change d with random values of θ ∼ U(π/4, 3π/4) and evenly
distribute a scatterer with a radar cross-section of 10 m2 in
the plane (this corresponds to a large scattering object) and
the forgetting factor β in Algorithm 1 is set to 0.97 [12].

The performance of each estimation method, in terms of
position RMSE, as a function of the distance between the UE
and the Base Station (BS), is depicted in Figure 2. Besides
estimation models, the Position Error Bound (PEB) is also
presented in the figure. The PEB represents the minimum
error attainable when the position is measured by an unbiased
estimator [17]. We observe that the PAST-based estimation
exhibits lower position errors than ESPRIT and 2D-IFFT for
distances closer to the BS (ranging from 0.1 m to 1 m).
This can be attributed to the fact that PAST is an iterative
search algorithm that projects data onto a lower-dimensional
subspace, refining the DOA estimates with each iteration.
However, beyond 1 m of distance, the PAST estimation’s
RMSE increases compared to the 2D-IFFT DOA estimation.
This may occur as the FFT beams approach the far-field beams
of each sub-array, which impacts the estimation performance.

The model operates in the near-field regime only when
0.62

√
(N∆)3/λ < ||x|| < 2(N∆)2/λ (between 3.4 m and

89 m). Although the 2D-IFFT DOA estimation demonstrates
the best performance in terms of RMSE within the near-field
distance compared to other methods, its precision is limited.
This limitation is evident in Figure 3 and Figure 4, where
the CDF curves indicate a higher variance for the estimator
compared to the subspace-based methods. We examined es-
timators’ behavior within the near-field region by assessing
two distances in this simulation: 3.5 meters (proximal to
the antenna) and 25 meters (distant from the antenna), both
confined within the near-field range.

The CDF curves of the proposed method exhibit enhanced
precision, comparable to that of 2D-IFFT. Additionally, com-
pared to ESPRIT, the curves show a similar performance.
However, it is crucial to highlight the lower computational
burden of PAST. While the latter has a complexity of O(Mr)
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TABLE I
SUMMARY OF THE 10TH, 50TH, AND 90TH PERCENTILES FOR THE CUMULATIVE DISTRIBUTION FUNCTION FOR ||x|| = {3.5, 25}m

3,5m 25m
Percentile PAST PAST and SVD ESPRIT 2D-IFFT PAST PAST and SVD ESPRIT 2D-IFFT

10 0.0250 0.0252 0.0259 0.2090 0.3983 0.2987 0.3847 0.5427
50 0.0251 0.0255 0.0312 0.8065 0.4730 0.3738 0.4103 0.9101
90 0.0253 0.257 0.0373 1.5012 0.5325 0.5025 0.5563 1.3765
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Fig. 3. Comparison of empirical CDFs between estimators, ||x|| = 3, 5 m.
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Fig. 4. Comparison of empirical CDFs between estimators, ||x|| = 25 m.

per sub-array, ESPRIT’s complexity is primarily dominated by
the SVD, which is O(M3). Therefore, the suggested technique
shows reasonable needs, making it appropriate for sub-arrays
with limited computational restrictions.

We compared the methods using the 10th, 50th, and 90th
percentiles. Table I supports the findings in Figure 3 and Figure
4. The 2D-IFFT method has outliers, causing positioning
errors over twice that of our method at the 90th percentile.
At the 10th and 50th percentiles, all techniques achieve sub-
meter accuracy, but our method performs better. Additionally,
subspace-based methods have comparable performance.

V. CONCLUSION

In this paper, we have presented a novel localization ap-
proach that combines the PAST algorithm and sub-array pro-
cessing for positioning estimation. We have achieved a balance
between low complexity and high-accuracy localization. Our
proposed method was compared to other well-known tech-
niques using RMSE and CDF-based statistical analysis. The
results show that our approach outperforms these techniques

in terms of precision. In future works, we plan to investigate
the influence of hardware limitations on individual sub-arrays
to bolster the reliability of the subspace estimator.
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