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Nonstationary blur modeling using robust
eigenkernels

Mauro Luiz Brandão-Junior, Victor Carneiro Lima e Renato da Rocha Lopes

Abstract— In this paper we propose a robust low rank model
for restoring images corrupted by a nonstationary blur. This
work improves the eigenkernels model proposed by Gwak and
Yang. Their method uses standard Principal Component Analysis
(PCA), and is thus not well suited to data with outliers. We
replace PCA by its robust version. Numerical experiments show
that our proposal offers reliable blur description and restoration
even in the presence of salt-and-pepper noise, in which the
original framework fails.
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I. INTRODUCTION

This paper focuses on the subject of nonstationary blur
modeling, which extends the idea of optical distortion mo-
deling using space-invariant convolutions to more realistic
space-variant ones. Unlike the simplistic stationary approach,
nonstationary models distort each pixel in a target image
using a different convolutive kernel. This extra flexibility is
particularly valuable when dealing with intricate systems, such
as the optics involved in imaging a large scene using a single
low aperture lens [1], [2], [3], [4].

Let I ⊂ Z2 be a finite set of (i, j) indexes. Optical image
acquisition provides an observed image y : I → R, which
is a distorted version of a latent image x : I → R. This
distortion can be modeled as a family of blur kernels h(i,j) :
N(i, j) ⊂ I → R, for all (i, j) ∈ I . The subset N(i, j) is a
neighborhood of indexes around (i, j). For every pixel indexed
in I we associate a blur kernel which models the distortion
affecting that single pixel. In this setting, the distorted image is
calculated as a 2D linear space-variant (LSV) convolution [5]
plus additive noise, which can be described using the filtering
operation

y(i, j) =
∑

(a,b)∈N(i,j)

x(a, b)h(i,j)(i− a, j − b) + η(i, j) (1)

=
(
x ⋆ h(i,j)

)
(i, j) + η(i, j), (2)

where ⋆ represents the 2d linear space-invariant (LSI) convo-
lution. Also, the input image x is padded at the borders when
needed.
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The increased accuracy in nonstationary blur modeling
comes with a price: In principle, we need to consider a
different kernel for each position in I , the set of indices of a
target image. This is a problem for large images, since kernel
data is usually stored in memory. A common approach is to
assume that the PSF (Point Spread Function) varies slowly for
adjacent pixels and subsample it only on a subset J ⊂ I of
indices. We could take J as a regularly spaced grid of points,
for example. Then, the PSF at the remaining positions can be
estimated using some kind of interpolation. In this direction,
the usual hypothesis made is that the blur is stationary inside
regions around each point in J . This gives rise to perhaps the
most well established method for handling nonstationary PSF,
the Efficient Filter Flow (EFF) [1], [3], [4].

We follow the work of Gwak and Yang [2], that is also
based on kernel subsampling. Gwak and Yang detail the
implementation of the nonstationary blur operation using a set
of eigenkernels obtained via Principal Component Analaysis
(PCA) of the kernels indexed in J . To illustrate the effective-
ness of their method, we blurred a test image using the LSV
convolution (2) and a PCA based approximation. The results
are shown in Fig. 1, with calculated Peak Signal to Noise
Ratio (PSNR) with respect to the LSV convolution. This first
example points out to how fast and how reliable the PCA
approximation can be with respect to the full convolution.

Although the eigenkernels proposal by Gwak and Yang
is impressive, standard PCA is highly susceptible to heavily
corrupted observations. Thus, in a practical setting, the success
of this proposal hinges on the requirement that all estimated
kernels are free of outliers, which is unrealistic. To address
this point, in this work we reinterpret the original eigenkernels
model as a low rank representation of nonstationary blur and
extend it to handle sparse anomaly corruption using a regu-
larization approach.1 The remainder of the paper is organized
as follows: Section II reviews the original framework and
presents a simple example of restoration strategy. In section III,
we present our robust eigenkernel proposal which is evaluated
in numerical examples in section IV.

II. LOW RANK REPRESENTATION OF NONSTATIONARY
BLUR

We consider q kernels with indices in the set J , each having
m pixels in total. Let H ∈ Rm×q be the matrix whose columns

1All experiments and examples presented in this paper can be reproduced
using blurtool, a small library containing the relevant structures and operations
that are discussed here. The library is written in python and is available at
https://www.github.com/mlbj/blurtool.

https://www.github.com/mlbj/blurtool
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Fig. 1: (a) Test image. (b) Test image blurred with linear space-variant convolution ∆τ = 42.306 s). (c) Test image blurred with eigenkernels model
PSNR = 52.305 dB, ∆τ = 0.034 s). All the computations done using the same computer setup.

are the vectorized kernels of each position in J , organized in
lexicographic ordering.

The fact that kernels are usually similar to each other
suggests that they lie in a low dimensional subspace. If this
holds, we can efficiently describe them using Principal Com-
ponent Analysis (PCA). We can evaluate PCA by obtaining
a truncated Singular Value Decomposition (SVD) of H =
H − ρ1T , where ρ is the mean sampled kernel, and 1 is a
column vector of ones. From the calculated SVD, we extract
r ≤ q principal axes, called eigenkernels in this context, and
r vectors of representation weights. Ideally, if the space that
contains all sampled kernels is indeed low dimensional, a small
value of r should be enough to represent them with small error.

Each mean subtracted kernel indexed by J , i.e., each column
of H , can be approximated using the linear combination of the
eigenkernels with respective representation coefficients. This
can be written in 2d signal notation as

h(i,j) − ρ ≈
r∑

k=1

ck(i, j)ek, (3)

where ek are the eigenkernels, ck(i, j) are the corresponding
representation weights and (i, j) ∈ J .

Since we assume that the original PSF varies slowly across
adjacent pixels, it is reasonable to assume that the representa-
tion weights ck, which were only estimated for the subsampled
indexed set J ⊂ I , can be interpolated to the whole set I , thus
approximating the complete space-varying PSF. Therefore, let
c̃k be the interpolated coefficients. The rank r approximation
of the PSF at position (i, j) ∈ I is given by

h̃(i,j) = ρ+

r∑
k=1

c̃k(i, j)ek =

r∑
k=0

c̃k(i, j)ek, (4)

where, in the last term, we make ρ = e0 and c̃0(i, j) = 1 for
all (i, j). This creates a more compact notation.

Now, plugging the reconstructed PSF (4) into the LSV
convolution (2), we can approximate the observed image by

y(i, j) ≈
(
h̃(i,j) ⋆ x

)
(i, j) + η(i, j) (5)

=

r∑
k=0

c̃k(i, j) (ek ⋆ x) (i, j) + η(i, j). (6)

Each convolution in (6) is with a space-invariant kernel. Thus,
the eigenkernels approximate a space-varying convolution by
r space-invariant convolutions, which can be implemented,
assuming appropriate boundary conditions, using doubly block
circulant matrices:

y =

r∑
k=0

CkEkx+ n, (7)

where Ck ∈ Rm×m is a diagonal matrix with the weights
c̃k(i, j) in its nonzero entries, and Ek ∈ Rm×m is the doubly
block circulant matrix that performs the 2d convolution with
the kth eigenkernel, n is random additive noise, x and y ∈ Rm

are the vectorized latent and observed images, respectively.

A. Restoration

Ignoring the noise term and assuming a periodic boundary
condition, the distortion caused by the eigenkernels model
to an input image x can be described by the action of the
matrix M =

∑r
k=1 CkEk, which is not generally doubly

block circulant but has a very convenient structure. In fact,
the matrix-vector products Mx and MTx can be efficiently
calculated using the diagonalization of each Ek with the help
of the Fast Fourier Transform (FFT) algorithm [6] using

Mx =

r∑
k=1

CkF
−1DkFx

MTx =

r∑
k=1

F−1D∗
kFCkx,

(8)

where F is the unitary scaled 2d Discrete Fourier Transform
(DFT) matrix, and Dk is the properly shifted and padded
Optical Transfer Function (OTF) of the kth eigenkernel. Using
(8), several deblurring algorithms can be immediately adapted
for the nonstationary case. As a simple toy example, consider
the l2 regularized problem, in which, as before, y represents
the observed image, x represents the latent image and M
models the nonstationary distortion:

min
x

1

2
∥y −Mx∥22 +

λ

2
∥x∥22. (9)

Its solution is equivalent to the linear system

(MTM + λI)x = MTy. (10)
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For λ > 0, we have that MTM + λI is positive definite, so
(10) can be solved using the conjugate gradient iterations

αi :=
rTi r

pT
i (MTM + λI)pi

xi+1 := xi + αipi

ri+1 := ri − αi

(
MTM + λI

)
pi

pi+1 := ri+1 +
rTi+1ri+1

rTi ri
pi,

(11)

where p0 = r0 = MTy −
(
MTM + λI

)
x0, where x0

is a vector of zeros. Notice that the algorithm in (11) can
be implemented using only the matrix-vector products in (8),
which can be implemented with low complexity. In fact, the
iterations (11) only need two of such product per loop.

Several other optimization tools could be used to solve
the toy problem we stated in (9), but the conjugate gradient
method makes use of the expressions (8) in a very clear way.
Also, other regularization priors like Total Variation (TV) [7],
[8] could be adopted.

III. ROBUST EIGENKERNELS

Although the eigenkernels model reviewed in section II
provides a convenient way of expressing a nonstationary
PSF, classical PCA notoriously loses its performance in the
presence of grossly corrupted samples or outliers. Fortunately,
the rich literature of Robust Principal Component Analysis
(RPCA) provides several tools to deal with these adversities.
Following Candès’ original RPCA proposal [9], we aim to
find a decomposition of the sampled kernels matrix H that is
a solution of the convex optimization problem

min
B,A

∥B∥∗ + λ∥A∥1

s.t. B +A = H
(12)

where ∥ · ∥∗ is the nuclear norm and ∥ · ∥1 is the l1 norm of
the vectorization. The simplest solution to (12) is the Principal
Component Pursuit (PCP) algorithm, which is derived as an
Alternating Direction Method of Multipliers (ADMM) [10]
iteration that minimizes the augumented Lagrangian

∥B∥∗ + λ∥A∥1 + ⟨V ,B +A−H⟩+ µ

2
∥B +A−H∥2F ,

in each variable while fixing the others, that is

Bk+1 = Dµ−1

(
H −Ak − µ−1V k

)
Ak+1 = Sλµ−1

(
H −Bk+1 − µ−1V k

)
V k+1 = V i + µ

(
Bk+1 +Ak+1 −H

) (13)

for arbitrary initial choices of A0 and V 0. Here, V is the
dual variable, and µ > 0 is a penalty parameter. The operator
Sλµ is the soft-thresholding function [11] and it can com-
puted analytically in each entry using the rule [Sτ (X)]ij =
sgn(Xij) (|Xij | − τ)+, where sgn is the signal function, and
x+ = max{x, 0}. Similarly, the Singular Value Thresholding
(SVT) operator D is defined by Dµ(X) = USµ(Σ)V T ,
where UΣV T is any SVD of X [11].

Ideally, after computing some iterations of PCP, the gross
anomalies of H are captured in the A component, and B is a
low rank reconstruction of H . Therefore, we extract the robust
eigenkernels of H by computing the original eigenkernels
from B as discussed in the last section.

IV. NUMERICAL EXPERIMENTS

One of the simplest and most common approaches [1] to
model the blur produced by an optical system is to assume
that its PSF is a stationary centered 2d Gaussian kernel like

ω(a, b) =
1

2πσaσb
exp

[
(a− a0)

2

2σ2
a

+
(a− b0)

2

2σ2
b

]
, (14)

where (a, b) are rectangular indexes used to describe the
kernel function and (a0, b0) is the center of the kernel image.
A simple nonstationary model can also be described using
Gaussian kernels. For instance, we are going to consider a
radial nonstationary model where the kernel function at each
set of centered polar indices (θ, r) is given by

h(θ,r)(a, b) = Aθ [ω̃
r(a, b)] , (15)

where Aθ is a rotation of θ, and ω̃r is a reparametrized version
of ω where the standard deviation in each axis is a function of
r calculated using σa(r) = αa+βar

γa and σb(r) = αb+βbr
γb

with constants αa, αb, βa, βb, γa, γb ≥ 0. Since each kernel is
a density function, after sampling it into a 2d discrete signal,
the sum of its absolute values is normalized to one.

(a) (b) (c) (d)

Fig. 2: Nonstationary PSF reconstruction discussed in Section IV-A. (a) Original noiseless PSF. (b) Original PSF corrupted with salt and pepper noise. (c)
PCA reconstruction (mean PSNR= 13.799 dB). (d) PCP-RPCA reconstruction (mean PSNR= 46.301 dB).
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A. Reconstruction of corrupted PSF

Usually, the nonstationary PSF of an optical system is
estimated for a lattice of indices J ⊂ I by combining blurred
and sharp versions of an image containing a grid of the points
in J . The estimated kernels are usually corrupted by noise.
Thus, in this experiment we compare the performance of the
original approach [2] and our robust proposal to model a
nonstationary PSF in which every sampled kernel is corrupted
with salt-and-pepper noise.

The low rank PSF B was generated using the rotated
Gaussian model (15) with parameters αa = 0.07, αb =
0.07, βa = 0.4, βb = 0.3, γa = 1, γb = 1. The PSF was
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Fig. 3: Singular values obtained via standard PCA and PCP-RPCA.

(a)

(b)

Fig. 4: First 9 eigenkernels recovered from the corrupted PSF. (a) Original
proposal with PCA. (b) Robust proposal with PCP-RPCA.

generated to match an image shape of 256× 256 pixels, and
sampled into a grid of 8 × 8 kernels, each having 32 × 32
pixels. Each sampled kernel was contaminated with an equaly
likelly salt and pepper noise saturating 3 % of its pixels with
the maximum or the minimum pixel values from that single
kernel. The noiseless PSFs B are shown in Figure 2 (a) and
their corrupted versions H = B +A are shown im Figure 2
(b).

(a) (b)

Fig. 5: Nonstationary blur produced by (a) the original PCA model (PSNR =
16.144 dB) and (b) our robust proposal (PSNR = 57.189 dB). Both models
estimated from a corrupted PSF, and PSNR values calculated with respect to
a noiseless PCA blur model.

We evaluated PCA and PCP-RPCA in the corrupted PSF
H , and obtained the set of original and robust eigenkernels,
each containing 64 eigenkernels. We used 500 iterations of the
PCP iteration (13) and the sparsity parameter was empirically
set as λ = 0.149. The singular values of each SVD run are
shown in Figure 3. Also, the first 9 eigenkernels provided by
each method are shown in Figure 4 (a) and (b).

At this point, we already see a glimpse of the impact
due to PCP-RPCA in recovering the original PSF from the
corrupted data: As displayed in the scree plot of Figure 3,
the sampled PSF information is spread across all 64 singular
values of the original reconstruction framework. In contrast,
our robust proposal shows a fast decaying pattern, which is a
desirable property that means that the first robust eigenkernels
are more capable of representing the data. Also, the original
PCA eigenkernels are contamined by noise, while the robust
eigenkernels are much clearer and resemble circular harmonic
modes, which is a also expected based on the Gaussian nature
of the PSF.

The reconstruction of all 64 sampled kernels are shown
in Figures 2 (c) and (d) using standard PCA and our robust
proposal. In both cases we used all 64 eigenkernels for a fair
comparison. We observe that the robust reconstruction looks
almost the same as the original PSF, achieving a mean PSNR
of 79.357 dB with respect to the original noiseless kernels. On
the other hand, the reconstruction PCA resulted in a corrupted
PSF with mean PSNR of 18.231 dB.

We also used both recovered PSFs to blur the cameraman
image from Fig. 1. The resulting blurred images, using PCA
and PCP-RPCA eigenkernels are shown in Fig. 5. To isolate
the noise effect in this comparison, we calculated the PSNR of
these two blurred images with respect to a ground-truth image
blurred by the original eigenkernels model recovered from the
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sampled PSF without salt and pepper noise B (Fig. 1 (d)).

B. Deblurring with robust eigenkernels

The main goal of improving PSF models is image restora-
tion. As discussed earlier, the eigenkernels framework provides
a simple way to adapt existing deblurring algorithms to the
nonstationary case. Here, we present a restoration example
using the PSFs obtained from the eigenkernels from the
subsection IV-A.

As seen before, the robust eigenkernels provided a good
approximation to the sampled kernels even in the presence of
moderate level salt and pepper noise. In this experiment, we
used the noiseless eigen PSF to generate the observed image
y, shown in Fig. 1(c), and applied 150 conjugate gradient
iterations (11). We ran this experiment using the noisy PCA
eigenkernels (Fig.4 (a)), and then using our robust proposal
(Fig.4 (b)). In all cases we adopted λ = 10−8.

(a) (b)

(c) (d)

Fig. 6: Deblurring with robust eigenkernels exctracted from 8×8 sampled ker-
nels (a) PCA (PSNR = 16.146 dB). (b) PCP-RPCA (PSNR = 24.653 dB).
Repeated experiment with 16 × 16 sampled kernels. (c) PCA (PSNR =
15.454 dB). (d) PCP-RPCA (PSNR = 56.632 dB).

The deblurred images with the PCA and RPCA eigenkernels
are shown in Fig. 6 (a) and 6 (b), respectively. As expected,
the robust recovery is better than the original one, both from
a qualitative and quantitative perspectives, with an increase
of 8.507 dB in terms of PSNR. Again, to isolate the noise
attenuation effects, the PSNR values were calculated from
a deblurred image using the original eigenkernels model
sampled from the original PSF without salt and pepper noise.

Although the robust recovery resulted in a good estimate
of x even in the presence of salt and pepper noise, a careful
look at it shows that its dynamic range is reduced with respect

to the ground truth. To address this issue, we repeated the
experiment with the same noise distribution but using 16×16
sampled kernels instead of 8 × 8. The PCA and PCP-RPCA
recoveries are depicted in Figs. 6 (c) and (d), respectively.
Comparing these to Figs. 6 (a) and (b), we see that the loss
in dynamic range occured due to suboptimal generalization
of PCP-RPCA in the presence of gross noise, and it can be
overcome by increasing the sampling rate of the noisy PSF.
Note that increasing the sampling rate does not improve the
dynamic range of the PCA recovery.

V. CONCLUSIONS

In this paper we follow the work of Gwak and Yang [2],
improving their eigenkernels model for nonstationary blur
to handle sparse anomaly corruption in the sampled PSF.
Specifically, we propose the use of PCP-RPCA instead of the
standard PCA in the original framework, due to its outlier
suppression properties. We compared both strategies with
numerical examples regarding the eigenkernel extraction of
a salt and pepper noise corrupted PSF and the indirect effects
observed on a toy restoration algorithm. In both cases, we see
that the standard PCA provides poor results in the presence of
outliers, while PCP-RPCA is capable of mantaining the good
performance of the original eigenkernels modeling, resulting
in anomalies that are greatly attenuated.
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