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Abstract— In this paper, we propose a transceiver impairments
compensation method employing deep learning equalization
for high baud-rate coherent optical systems. The method
is based on a deep cascade-forward neural network. The
performance evaluation of the nonlinear equalizer was carried
out through numerical simulations based on back-to-back optical
transmission considering a 1.2 Tb/s line rate single wavelength
(DP-16QAM at 150 GBd). The results indicate that the proposed
equalization achieves optical signal-to-noise ratio (OSNR) gains
equal to 0.5 and 2 dB compared with the conventional deep
feed-forward neural network and linear cases, respectively. The
proposed equalizer also presents data rate gains, compared with
the conventional deep neural network and linear, respectively,
equal to 50 and 150 Gb/s, in the low OSNR regime, and 10
and 70 Gb/s, for the high OSNR regime. Moreover, the impact
of equalizer architecture aspects is analyzed. The simulation
results confirm that the proposed equalization technique is a good
solution to mitigate linear and nonlinear transceiver distortions
enabling the next generation of 1 Tb/s coherent modules.

Keywords— Transceiver impairments compensation, deep
learning, deep cascade-forward neural network, high baud-rate
coherent systems.

I. INTRODUCTION

In order to satisfy the demand of Internet connectivity,
the optical communications systems industry urge for
high-capacity and cost-effective solutions over a wide range
of applications such as submarine, terrestrial long-haul, metro
and access networks, for traditional telecom services providers
(TSP), and data center interconnect (DCI), for cloud services
providers (CSP). In this way, the coherent line interfaces
continue to evolve the transmission rate per wavelength
from 100 Gb/s to 800 Gb/s in commercial systems [1].
As 100/200 Gb/s optical systems are well commercially
established [2], the 400/600 Gb/s systems are presenting an
impressive growth in deployments [3], boosted mainly by
standards and multi-source agreement (MSA) such as 400ZR,
Open ROADM and OpenZR+ [4]. Regarding the 800 Gb/s
coherent transceivers, it is expected a massive adoption in
the next years, also accelerated by future standards such as
800ZR [1]. To support the growing traffic demands, the next
frontier in coherent technology pushes the single wavelength
capacity towards 1 Tb/s [5], [6].
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To achieve a high transmission rate per wavelength as
1 Tb/s, the main physical degrees of freedom to explore
in a coherent optical transceiver are the number of optical
subcarriers, modulation format, and symbol rate. Regarding
the first, single-carrier approaches come up as an attractive
solution compared with multi-carrier implementations due to
the reduced transceiver complexity and cost [7]. Specifically
for a single-carrier solution, the combination of high-order
quadrature amplitude modulation (QAM) format, as the
dual-polarization (DP) 16QAM in contrast with DP-64QAM,
and high baud rate, currently, is the best option to scale
the bit rate of a coherent line interface, yielding to a
reasonable trade-off between implementation cost and system
performance [8]. Nevertheless, optical systems based on
high-order QAM modulation and high symbol rate are
highly impacted by optical fiber nonlinear distortions, noise
sources and transceiver impairments such as linear and
nonlinear distortions of electrical components, including
digital-to-analog and analog-to-digital converters (DAC and
ADC), driver, and transimpedance amplifiers (DA and
TIA), and optical components, such as modulators and
photodetectors [9].

Recent advances in digital electronics enabled the
development of application specific integrated circuits (ASICs)
for coherent optical transceivers. The main digital signal
processing (DSP) blocks implemented in the coherent ASICs
are the linear equalizers to compensate linear impairments
such as chromatic dispersion (CD) and polarization mode
dispersion (PMD). Now, efforts are made to mitigate nonlinear
effects imposed by the optical fiber such as self-phase
modulation (SPM), cross-phase modulation (XPM) and
four-wave mixing (FWM) [10] and also distortions imposed
by the transmitter and receiver and, among them, the deep
learning equalization has been a promising solution [11].

Several works exploring deep learning methods, precisely
deep neural networks (DNN), have been reported. In [12],
a nonlinear equalizer based on a complex-valued DNN
to mitigate the nonlinear impairments caused by optical
fiber propagation but also imperfections resulting from using
low-cost electrical and optical front-end components is
proposed. In [5], a DNN is trained to mitigate the transceiver
response of a 128 GBd coherent optical system based on
a training process using either a direct learning architecture
(DLA) or an indirect learning architecture (ILA). In [13],
a DLA-based DNN using a curriculum learning approach
for transceiver impairments compensation is demonstrated.
However, all the above mentioned techniques consider
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complex DNN architectures, increasing the DSP complexity.
Moreover, the transmitter (TX)-based digital pre-distortion
(DPD) requires an iterative feedback loop for training,
which affects the peak-to-average power ratio (PAPR) of the
transmitted signal [14].

In this paper, we propose an alternative receiver (Rx)-based
deep cascade-forward neural network (CDNN) for transceiver
impairments compensation applied to high baud-rate coherent
optical systems. The CDNN presents an operating principle
similar to the conventional DNN, but including connections
between the input/output of each layer and each subsequent
layer, allowing it to improve the mapping between the
input and the desired output. The proposed deep learning
equalization is used in the Rx DSP and presents a simple
architecture, decreasing the digital receiver complexity and
eliminating any iterative feedback loop for training. The
performance evaluation of the nonlinear equalizer is carried
out through numerical simulations based on a back-to-back
optical transmission system considering single-carrier 1.2 Tb/s
(DP-16QAM at 150 GBd).

II. DEEP LEARNING EQUALIZATION

The Fig. 1(a) shows the structure of a conventional DNN
used for transceiver impairments mitigation. The DNN tries
to find a function that maps the input to the desired target
by considering intermediate steps based on the neurons of
the network. The implemented DNN comprise 4(m + 1)
real-valued inputs, where 4 represents the real and complex
components of a dual-polarization signals and m is memory
depth, and 4 real-valued outputs with l hidden-layers of hl

neurons each [9]. For each neuron, three steps are carried out:
(1) weight multiplication of inputs, (2) summing the weighted
inputs and a bias, and (3) passing the results of (2) through an
activation function. For the proposed nonlinear equalizer, we
use a network with m = 5, up to two hidden layers (l = 2)
and 15 neurons per layer (hl = 15 for all l). The impact of
different numbers of hidden layer and neurons per layer is
also investigated. The activation function considered in each
hidden layer is a nonlinear hyperbolic tangent sigmoid transfer
function, meanwhile the output layer uses a linear transfer
function.

The transceiver impairments compensation employing the
DNN is based on two phases: training and evaluation. In
the training step the estimation of the model parameters
is performed, where initial weights and biases are applied
to the training data, resulting in a certain output of the
neural network, characterizing the forward propagation. The
difference between the actual output and desired targets of
the DNN is used to calculate a loss function. Afterwards,
the gradients of the loss function are calculated considering
a backward propagation. Finally, the parameters of the
DNN (weights and biases) are updated based on the
Levenberg-Marquardt backpropagation algorithm [15].

The training phase is performed in a specific optical
signal-to-noise ratio (OSNR) equal to 27 dB (defined as
calibration point). At the calibration point, one data frame is
captured and used for the training process. For each OSNR

value, the evaluation phase is carried out over five data
frames. This approach ensures a separation of training and
evaluation data, respectively training and testing data [16].
In both phases we used data frames with ≈250000 symbols.
Specifically in the training phase, the data frame was divided
in two sets: 70% for the training set, which is used for
computing the gradient and updating the weights and biases,
and 30% for the validation set, which is used as a pre-test
to avoid overfitting and underfitting. The training phase is
carried out until validation error increases compared to the
training error for a specified number of iterations (in order to
prevent overfitting) or the maximum number of epochs (500)
is reached.

In the evaluation phase, the received signals pass through
the trained DNN for performance measurement considering
the mean over the five data frames. An alternative to the
conventional DNN is the CDNN [17]. The Fig. 1(b) shows
the block diagram of a DNN with cascaded structure. The
CDNN allows to improve the mapping between the input
and the desired output. The neural network with a cascaded
configuration presents a principle similar compared with the
DNN, but includes connections between the input/output of
each layer and each subsequent layer.

III. SIMULATION MODEL

The simulation setup is presented in Fig. 2. At the Tx
side, a DSP stack is employed. First, a pseudorandom binary
sequence (PRBS) is generated and mapped into constellation
symbols (16QAM), which are upsampled and filtered by a
root-raised-cosine filter (roll-off=0.1). Following, the DAC
converts the signal to the analog domain with a symbol rate
equal to 150 GBd, which is sufficient to include 20%-overhead
(OH) for soft-decision (SD) forward error correction (FEC),
achieving a net bit rate of 1 Tb/s. Finally, the electrical
signals are applied into a LiNbO3 dual-polarization in-phase
and quadrature modulator (DP-IQM), modulating the optical
carrier. The desired OSNR at the Rx side is obtained
through amplified spontaneous emission (ASE) noise insertion,
allowing one to sweep the received OSNR.

At the Rx side, the received signal is detected using a
polarization-diversity coherent optical receiver. The receiver
comprises a 90◦ optical hybrid connected to a local oscillator.
The four optical outputs are converted to the electrical domain
using balanced photodetectors (PD). The four electrical signals
are sampled by an ADC for offline processing. The DSP
subsystem considering the deep learning equalization is
described as follows. First, the received electrical signals are
resampled to 2 samples per symbol in the pre-processing stage.
Next, they are orthonormalized to compensate the optical
front-end distortions and inphase and quadrature imbalances
using Gram-Schmidt orthogonalization procedure (GSOP).
Polarization demultiplexing is performed by radius directed
equalization (RDE) (with 20 taps), where the constant modulus
algorithm (CMA) is used for pre-convergence. After this,
carrier recovery (CR) is employed to compensate frequency
offset and phase noise using M th power frequency algorithm
and two-stage blind phase search (BPS) algorithm (with 30
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Fig. 1. Block diagrams of different nonlinear equalizers: (a) conventional deep feed-forward neural network and (b) proposed deep cascade-forward neural
network.

phases per stage, window size of 100, and step size of 50).
After the CR, the DNN or CDNN is applied. Finally, the error
vector magnitude (EVM) is calculated, which is given by [18]:

EVMrms =

√√√√∑N
n=1 |yn − xn|2∑N

n=1 |xn|2
, (1)

where yn is the n-th received symbol and xn is the n-th
ideal constellation symbol. Based on the EVM, the electrical
signal-to-noise ratio (SNR) is estimated by [19]:

SNR ≈
[

1

EVMrms

]2
. (2)

In the Shannon theory, the constrained capacity (or
maximum mutual information (MI) achieved by a specific
modulation format) for a discrete memoryless channel, in
bit/symbol, is given by [20]:

C =

M−1∑
k=0

Pr(Ak)

∫ ∞

−∞
ρY |Ak

(y|Ak)·

log2

[
ρY |Ak

(y|Ak)∑M−1
l=0 Pr(Al)ρY |Al

(y|Al)

]
dy,

(3)

where Pr(Ak) is the probability associated with the generation
of symbol Ak, and ρY |Ak

(y|Ak) is the probability density
function of the channel output given that symbol Ak was

transmitted. For a complex additive white Gaussian noise
(AWGN) channel with variance σ2 at each dimension, the
probability density function is given by:

ρY |Ak
(y|Ak) =

1

2πσ2
e

−|y−Ak|2

2σ2 . (4)

Therefore, the capacity C can be related with the SNR =
E[|Ak|2]/(2σ2). The association between the electrical and
optical domains is done by relating SNR and OSNR
using [21]:

SNR =
2

p

Bn

Rs
OSNR, (5)

where p is the number of polarization modes, Rs is the
symbol rate, and Bn the reference bandwidth (typically 0.1
nm or 12.5 GHz). Although, to include practical optical system
aspects such as transceiver impairments and DSP algorithms
limitations, the performance analysis is carried out replacing
the theoretical curves (given by Eqs. (3) and (5)) by simulation
curves generated by offline data post-processing. In this case,
the OSNR was varied considering a specific range, and the
electrical SNR (Eq. (2)) was estimated from the EVM (Eq. (1))
and the Gaussian assumption for the noise. After this, using
the estimated electrical SNR, the MI and, consequently, the
data rate (as a result of multiplying the MI by the symbol
rate), assuming a capacity-achieving FEC scheme, are obtained
interpolating the theoretical curve [22].
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Fig. 2. Simulation setup employing an amplified spontaneous emission (ASE) noise loading method to range the received OSNR.
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IV. SIMULATION RESULTS

The performance evaluation of the proposed nonlinear
equalizer based on CDNN for transceiver impairments
mitigation is carried out using the simulation setup presented
in Fig. 2. The simulation parameters are listed in Table I. The
electrical and optical front-end specifications considered are
typically used in 800 Gb/s coherent optical transceivers, which
are based on the best commercially available components [23].

TABLE I
SIMULATION PARAMETERS.

Component Parameter Value

Signals
Symbol Rate 150 GBd
Filter Roll-off 0.1

DAC and ADC

Quantization 8 bits
Bandwidth 70 GHz

Sample Rate 300 GSa/s
Deterministic Jitter 1 ps

Random Jitter 0.25 ps

Transmitter
Laser Wavelength 1550 nm
Laser Linewidth 100 kHz

Modulator Bandwidth 70 GHz

Receiver
Laser Linewidth 100 kHz
PD Bandwidth 70 GHz

Figure 3 presents the data rate, obtained by the
multiplication of MI and symbol rate, versus the OSNR
for the proposed CDNN, conventional DNN and standard
DSP without nonlinear equalization, defined here as linear
DSP. As expected, in lower OSNRs, the data rate decrease
as a consequence of the high ASE level. In addition,
the convergence and performance of the DSP algorithms
become critical, and the electrical SNR falls rapidly when
the algorithms are unable to converge properly [24]. On the
other side, in higher OSNRs, the data rate increases as a result
of low ASE level. Curiously, the data rate is always below
the maximum data rate mostly because of DAC and ADC
limitations [24].
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Fig. 3. Data rate versus OSNR for the CDNN, DNN and linear cases.

Considering a target data rate equal to 1 Tb/s, the CDNN
presents OSNR gains equal to 0.5 and 2 dB compared with the
DNN and linear cases, respectively. Also, the CDNN shows

data rate gains equal to 50 and 150 Gb/s compared with DNN
and linear DSP, respectively, in the low OSNR regime (25 dB).
Meanwhile, for the high OSNR regime (37 dB), the proposed
nonlinear equalizer achieve data rate gains equal to 10 and
70 Gb/s in contrast to the DNN and linear, respectively. The
previous results confirm that the deep learning equalizer is able
to compensate the linear and nonlinear transceiver impairments
improving the performance in all system operation regimes.

Figure 4 presents the data rate as a function of the
OSNR for the CDNN equalizer considering two hidden layers
and different numbers of neurons per layer. The equalizer
architecture notation e.g., 10|10 stands two hidden layers with
10 neurons each one. The 15|15 model is used here as a
benchmark. The 10|10 and 5|5 architectures shows data rate
reductions, respectively, equal to 5 and 30 Gb/s, for the low
OSNR regime (29 dB), and 10 e 30 Gb/s, in the high OSNR
regime (37 dB).

23 25 27 29 31 33 35 37 39 41 43
OSNR [dB]

1000

1050

1100

1150

1200
D

at
a 

R
at

e 
[G

b/
s]

CDNN 15|15
CDNN 10|10
CDNN 5|5

Fig. 4. Data rate versus OSNR for the proposed CDNN considering two
hidden layers and different number of neurons per layer.

Figure 5 presents the data rate versus the OSNR for the
CDNN equalization using one or two hidden layers and 15
neurons per layer. We use the same equalizer architecture
notation depicted in Fig. 4. Again, the 15|15 model is used
as benchmark. The equalizer architecture based on a single
hidden layer with 15 neurons shows a data rate reduction equal
to 20 Gb/s, in the low OSNR regime (29 dB), and 30 Gb/s,
for the high OSNR regime (37 dB). The preceding results
elucidate the impact of equalizer architecture aspects, showing
the importance of a proper model design by the DSP engineer
to achieve a trade-off of complexity/power consumption and
performance towards an ASIC implementation.

V. CONCLUSIONS

We proposed a transceiver impairments compensation
method employing a deep cascade-forward neural network
for high baud-rate coherent optical transmission systems. The
performance of the deep learning equalization was analyzed
based on 1.2 Tb/s (DP-16QAM at 150 GBd) back-to-back
optical transmission simulations. The simulation results
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Fig. 5. Data rate versus OSNR for the proposed CDNN considering one or
two hidden layers and 15 neurons per layer.

indicated that the proposed nonlinear equalizer achieved
OSNR gains equal to 0.5 and 2 dB compared with the
conventional DNN and linear DSP, respectively. Furthermore,
the proposed method presented data rate gains, compared with
the DNN and linear, respectively, equal to 50 and 150 Gb/s,
in the low OSNR regime, and 10 and 70 Gb/s, for the high
OSNR regime. Additionally, we investigated the influence
of equalizer architecture on the performance, confirming the
necessity of an appropriate equalizer design towards a practical
implementation.
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