
HARDWARE / SOFTWARE CO-DESIGN OF A SIMPLE
RISC MICROPROCESSOR FOR DIGITAL SET-TOP-BOX

APPLICATIONS *

Marco Antonio Simon Dal Póz (mdalpoz@lsi.usp.br), José Edinson Aedo Cobo (aedo@lsi.usp.br),
Wilhelmus Adrianus Maria Van Noije (noije@lsi.usp.br), Marcelo Knörich Zuffo (mkzuffo@lsi.usp.br)

Laboratório de Sistemas Integráveis (LSI)
Departamento de Engenharia Eletrônica – Escola Politécnica da Universidade de São Paulo (USP)

Av. Prof. Luciano Gualberto, 158, travessa 3, São Paulo - SP

* This project is funded by Fapesp grant #99/01097-9 and NEC do Brasil / CPDIA Project: Multimedia Applications for Digital Services

Networks

ABSTRACT
We propose the definition and evaluation of an instruction set
designed and tuned for multimedia applications on a Digital Set-
Top-Box. The proposed instruction set had its performance
evaluated in software and hardware to obtain the best cost / benefit
relationship referring to performance and silicon chip area. An
instruction set was obtained enhancing the performance of iDCT
algorithms to achieve the needs of real time MPEG-2 video
decompression and to have an extra processing power available for
future more complex algorithms (e.g., MPEG-4). A RISC basic
core was modeled in VHDL and the defined instruction set was
added into this core. In this way, the evaluations were made
through out logical simulations by implementing over FPGAs, and
the results of the added instructions over the algorithm
performance were evaluated using high-level synthesis tools and in-
field tests.

1. INTRODUCTION

A Set-Top-Box is the interface between cable TV network and the
TV set. The presence of a Set-Top-Box in the subscriber's home
becomes necessary for the introduction of new services through
the cable TV network, such as high definition television (HDTV),
Internet access using a simple TV set, electronic commerce, tele-
medicine and others.

One of the main focuses of the Digital Set-Top-Box is the
possibility of digital transmission of the TV channels, which implies
in higher video and audio quality and less spectral occupancy. With
less spectral occupancy, the cable TV provider can offer a higher
number of channels and other services. This reduction in spectral
occupancy (band) is due to video compression algorithms, such as
MPEG-1 [15], MPEG-2 [16] and all derivatives.

The American Standard for digital transmission (ATSC) [1] and
the European Standard (DVB) [2] use the same algorithm for
video compression (MPEG-2). This algorithm is essentially
composed by three parts:

Ø Discrete cosine transform (DCT) inter/intra frame;

Ø Quantization of DCT coefficients, according to tabulated
rules;

Ø Statistical data compression (Huffman encoding and Run-
Length-Encoding).

The resulting data is packed into an MPEG-2 stream and
broadcasted over the cable network. The Set-Top-Box, for
enabling the subscribers to watch the digital channels, should run
exactly the inverse of the above operations. This operation is called
video decompression, which can be hardware, software or
hard/software implemented (mixed).

It is known that the most complex of the above operations for video
decompression is the inverse DCT (iDCT), which requires special
attention in the digital design, because the big amount of arithmetic
operations. In this paper, we present a microprocessor core design
and implementation that can run efficiently an iDCT software and
is able to easily introduce additional instructions for future
reconfigurable algorithms and performance improvement.

2. DIGITAL SET-TOP-BOX
PERFORMANCE VS UPGRADEABILITY

The most part of the current Digital Set-Top-Box available works
with MPEG-2 data streams. Some of them have an internal
MPEG-2 chip decoder (hardware ASIC implementation), and
others use a fast processor running an MPEG-2 software decoder.
The hardware implementation usually has the best performance,
which means that the decoder operates with low clock frequencies,
low power consumption and small chip area, obtaining a low cost
decoder, but has no upgrade capability. In this way, when the cable
TV providers adopt the MPEG-4 (or better) video compression
standard, all digital Set-Top-Boxes based on MPEG-2 hardware
decoder will not still be compatible with the new contents being
broadcasted through the network. So, a new hardware investment
will be necessary to exchange these digital Set-Top-Boxes from
the subscribers, which represents a high cost (for the provider or
for the subscribers). The software implementation usually has poor
performance, which means that the decoder demands a fast
processor (higher power consumption) and larger chip area,
obtaining a high cost decoder, but has the advantage of being
upgradeable.

But the upgrade capability of the software implementation is
limited. Since the complexity of video compression and

decompression algorithms is growing, the performance of the
software tends to decrease. This effect usually is reduced by the
adoption of a very fast processor, which implies in a high cost
digital Set-Top-Box. To improve the performance of the software,
the processor should have specific instructions designed for running
the new software decoders. But, since a processor is implemented
in an ASIC, further modifications are impossible without hardware
exchange, which is also too much expensive.

3. RECONFIGURABLE DIGITAL SET-
TOP-BOX

The solution for this problem of performance versus cost can be
obtained with the reconfigurable computing. Reconfigurable
computers have part of the hardware implemented in FPGAs (Field
Programmable Gate Arrays), which implies that parts of the
hardware can be modified after installed in the subscriber's home
and while it is working. If the Digital Set-Top-Box uses at least one
FPGA in the hardware design, the internal logical functions can be
modified a posteriori.

The solution being proposed here is to implement a simple RISC
core microprocessor in a fast FPGA and, when the cable TV
provider decides to change the video compression method, a new
core can be sent and written in the FPGA, producing an upgrade in
all the Set-Top-Boxes working within that cable TV network. With
this reconfigurable capability, new instructions can be implemented
(in the same equipment) in the processor, and so the performance
of the software will be much better than the pure software
upgrade.

The implementation of a processor in an FPGA can become
practical if the following requirements are satisfied:

Ø The FPGA should be capable of working in high clock
frequencies. This is necessary because the performance of a
digital circuit implemented in an FPGA is usually worse than
the one implemented in an ASIC;

Ø The FPGA should have a large number of gates. This is
required to allow several future modifications in the digital
design;

Ø The FPGA should not be very expensive. Of course the
FPGA implementation of a processor will be more expensive
than an ASIC, because to achieve similar performance,
FPGAs will require better microelectronics technology
(smaller dimensions).

The problem of the high cost of such an FPGA can be overcame if
we consider the high useful lifetime that this kind of implementation
may have, supporting many types of future video compression
techniques. Another way of cost reduction is the large utilization of
FPGAs, which can reduce their price.

4. TECHNIQUES AND TOOLS FOR
DEDICATED MICROPROCESSOR DESIGN

Several works have been done in the design field of general-
purpose processor. There are many alternatives for ASIP
(Application Specific Instructions Processor) design. One

methodology consists in the interactive design of the instruction set
and the appropriate compiler for the processor. Examples of these
tools are “CHESS” and “CHECKER” [14], a configurable
compiler for C language and a simulator generator oriented for
ASIP design in digital signal processing field, respectively. These
tools use a language called nMLx [6] to describe the instruction set
semantics and micro-architecture details. The design process
begins assuming one data path that can be based on operation
types analysis and the most frequent operation sequences. Then
the application is mapped onto the data path. After that, statistical
informations can be obtained about the application's data path use.
With this information, changes are suggested in the data path, for
example, new connections between elements of the data path.
After the implementation of these changes, the application is
mapped again and a new analysis is done. This procedure is
repeated until the design objectives are reached.

On the other side, Sato [7] proposes a new methodology in which
the instruction set is selected from a “super-set” that is derived
from the GCC’s intermediate language (GNU GCC). The
instruction set is generated by “super-set” modification based on
statistical information obtained from a “profiling” process done by
benchmark programs. This methodology uses a sequential model
of the processor and the design space is limited to the GCC’s
instruction set.

Holmer [8] proposes a method to automatically derive the
instruction set based on a data path architectural pattern and on a
benchmark set. The method consists in transforming the
benchmarks in a state transition set, where each sequence
represents shorts sequences of the benchmark code. After that,
the optimum instruction set is determined for each state transition,
and the final instruction set is defined by means of required
instructions coverage to run all pairs of benchmark state. This
methodology uses one parametrizable data path in the synthesis
process. The data bus and address bus length, the number and
class of registers, the operations that can be done with the data
(add, mul, etc.) are pre-determined by the designer. The number of
operands referred by the instruction, the placement of this operands
and the way to reference this operands (addressing modes) are
determined by the tool. Data path parameters such as number of
read ports and write ports of the register bank, memory ports,
number of functional lines, number of cycles for the memory
operations are determined from the data path architectural pattern.
Huang [9] had developed a technique of co-synthesis of the
instruction set and micro-architecture. The instruction set model,
the architectural pattern and the pipelining model are previously
specified by the designer. By means of another tool called “Piper”,
the control part and the data path are projected. This tool generates
a RTL description and a rearranging table to be used by the
compiler. In these works, the authors have treated the instruction
set design problem and the instructions selection like a scheduling
or modules selection problem. There should be noticed that
scheduling and modules selection techniques can not generate
new logical resources in the solution. Another technique in which
the generation of new resources is possible is reported in [10]. In
such a case, the compiler extracts the functionality of these
resources using hardware description language, which are
implemented in an FPGA connected like a co-processor in a main
processor, running the application in a cooperative way. One

problem in this technique is the overhead introduced between the
processor and FPGA communication.

Another methodology is Satsuki [11] system. This system uses a
general-purpose architecture (Harvard type) with a invariant
instruction set. The buses length of the processor and of the
registers bank can be modified in such a way that these parameters
are selected to achieve the user requirements for a specific
application. The configurable processor used in this methodology is
called ASAP (“Application Specific Adaptable Processor”). The
environment is constituted by a tool that generates the compiler and
has a high-level synthesis tool. In this way it is possible to compile
the applications and synthesize the ASIP in a port level. The
limitation introduced by this method is the restriction of the base
micro-architecture, because the control part is constituted by a
global state machine. This global state machine becomes too
difficulty due to the introduction of new instructions.

There should be noticed that some of the mentioned methods do
not consider the possible gains introduced by the use of optimized
data structures or when some strategies like sub-word level
parallelism are used, that is efficiently employed in multimedia
applications [12]. In these cases, it is necessary to introduce
manual changes. By this reason, a configurable architecture,
modeled in a convenient way using a hardware description
language, simplifies considerably the changes in the architecture
and in the instruction set. In the same way, it allows a fast
implementation using high-level synthesis tools, because the
modeling is done using synthesizable constructions. Also, the
changes impact in clock cycle and area can be measured exactly
after the high-level synthesis process.

5. PROCESSOR AND SOFTWARE CO-
DESIGN

Since the iDCT operation is the most complex of the video
decompression operations, the iDCT algorithm should be optimized
as best as possible. This is the main rule for this processor and
software design techniques. Three algorithms were analyzed: Feig
& Winograd [3], LLM [4] and AAN [5]. The main characteristics
of these algorithms are listed in table 1.

Table 1: number of arithmetical operations for each
algorithm

Algorithm Adds per
8 element
1D DCT

Muls per 8
element 1D

DCT

Adds per 8x8
elem. 2D

DCT

Muls per 8x8
elem. 2D

DCT

Feig&Wino N/A N/A 454 94

LLM 28 11 448 176

AAN 29 5 464 144

For area reduction, implementations using floating point should be
avoided. Using fixed point arithmetic instructions, the main
hardware optimization consists in adding an instruction MAC
(multiply and accumulate) to the processor design. This processor
design is based on the instruction set described in Patterson [13]
and was modeled entirely in synthesizable VHDL using generic
directives. The control part was created in a modular structure in

order to ease the insertion and removal of new instructions.
SynopsysTM Design Compiler was used to synthesize the processor
code and Synopsys VSSTM was used to simulate the project.

The two-dimensional iDCT algorithm, despite the minor number of
multiplications, requires more complex instruction set, which implies
in higher area consumption, which is not desired at all. Beside, it
also requires a larger constants bank to be stored, which requires
more area, too. Therefore, the choice was the AAN algorithm,
using 16 bit multiplications and 32 bit accumulations (sums).

To decode a standard definition television (SDTV), let's calculate
the maximum time for a 8x8 pixels decoding. The resolution is 640
x 480 pixels, with a frame rate of 30 fps. So, for each frame there
are 4800 iDCTs. Assuming that the others operations (Huffman
decoding, RLE and data realignment) have the same computational
cost as the iDCT (which was confirmed by doing software tests
using a standard MPEG-2 with source code available), the
maximum time for a complete iDCT results 3.472µs (1.736µs for
luminance data and 1.736µs for chrominance data).

Without these additional instructions, the processor should get the
8x8 pixel data from memory, run the calculus and write the results
into the memory in 1.736µs. Since the number of arithmetic
operations is 608 and 64 words should be read and written, a 16-bit
processor would require a maximum period of 2.855ns, or a
350MHz clock. An FPGA capable of running 350MHz and with
enough area to implement an entire processor has actually a
prohibitive cost (if it exists). Of course more intelligent approaches
can be designed. Adding the MAC instruction and a 32-bit
processor, the number of arithmetic operations is 608 and 32 words
should be read and written. But the iDCT data have 16 bits of data,
which implies that the MAC instruction, using 32 bit data bus, can
handle 2 multiplications and sums at a time, reducing the number of
arithmetic operations to 304. But the MAC instruction does 2
multiplications and 2 sums, which can handle 144 multiplications
and 144 sums in 72 instructions. The others sums can be made with
320 standard sum operations, resulting in 392 processor
instructions. The processor would require a maximum period of
4.429ns, or a 226MHz clock. An FPGA capable of running
230MHz still have a prohibitive cost. To reduce the need for high
speed processor, more specific instructions should be implemented.
Since the MAC instruction operates with 16 bits of data, two data
at the same time, one natural instruction required to enhance the
performance is the HADD instruction, which sums simultaneously
2 words of 16 bits. This reduces the amount of ADD instructions to
160 HADD instructions, resulting in 232 processor instructions.
The processor would require a maximum period of 7.483ns, or a
134MHz clock. An FPGA capable of running 150MHz with
enough area has actually a reasonable cost and is suitable for
commercial applications. Of course, more intelligent instructions
can be added, and the performance results will be discussed later.

The RISC processor implemented has 32 registers (R0 to R31) of
general use. To simplify the software design, a constants bank (16
constants, K0 to K15) was added to the data path. This reduces
the data transferred from the memory to the registers with a small
increase in area occupation. These constants contain the iDCT
coefficients that are used in the multiplications, cossines multiplied
by 215 (in this case, by the MAC operations). Four kinds of MAC
instructions were created:

Ø MAC Ri, Rj, Rk : this instruction (multiply and accumulate)
multiplies the high word (16 bits) of Rj with the high word of
Rk, sums the result with the high word of Ri and stores the
result in the high word of Ri; simultaneously multiplies the low
word of Rj with the low word of Rk, sums the result with the
low word of Ri and stores the result with the low word of Ri

Ø MACL Ri, Rj, Rk : this instruction (multiply and accumulate,
previously cleaning Ri) multiplies the high word of Rj with the
high word of Rk and stores the result in the high word of Ri;
simultaneously multiplies the low word of Rj with the low
word of Rk and stores the result in the low word of Ri

Ø MACK Ri, Rj, Kk : this instruction (multiply and accumulate
using constant register) multiplies the high word of Rj with the
high word of constant Kk, sums the result with the high word
of Ri and stores the result in the high word of Ri;
simultaneously multiplies the low word of Rj with the low
word of constant Kk, sums the result with the low word of Ri
and stores the result with the low word of Ri

Ø MACKL Ri, Rj, Kk : this instruction (multiply and accumulate
using constant register, previously cleaning Ri) multiplies the
high word of Rj with the high word of constant Kk and stores
the result in the high word of Ri; simultaneously multiplies the
low word of Rj with the low word of constant Kk and stores
the result in the low word of Ri

As shown in design requirements (minimum speed for iDCT),
instructions for 2 parallel 16 bits sums were created [12]:

Ø HADD Ri, Rj, Rk : this instruction (half add) adds the high
word of Rj with the high word of Rk and stores the result in
the high word of Ri; simultaneously adds the low word of Rj
with the low word of Rk and stores the result in the high word
of Ri

Ø HADDAC Ri, Rj, Rk : this instruction (half add and
accumulate)adds the high word of Rj with the high word of
Rk, sums the result with the high word of Ri and stores the
result in the high word of Ri; simultaneously adds the low
word of Rj with the low word of Rk, sums the result with the
low word of Ri and stores the result in the low word of Ri

Ø HADDF Ri, Rj, Rk : this instruction (half add followed by a
full adder) adds the high word of Rj with the high word of Rk,
simultaneously sums the low word of Rj with the low word of
Rk, and sums both results and stores the final result in Ri (32
bits datum)

Ø HADDFAC Ri, Rj, Rk : this instruction (half add and
accumulate, followed by a full adder) adds the high word of Rj
with the high word of Rk, simultaneously sums the low word
of Rj with the low word of Rk, and sums both results with the
double-word of Ri (32 bits datum) and stores the final result in
Ri.

The iDCT software has to be made in Assembly, because it is a
critical operation and should be optimized at maximum. The results

of the MAC operations showed that the MAC instruction lasts
68.4ns for 32 bit data bus (2 multiplications simultaneously and 2
sums). Again, we adopted the technique of pipelining to divide the
MAC instruction into 8 stages. In principle, 7 stages would be
enough, but to allow an additional clock increase, 8 stages were
adopted. Since the RISC core has already a 4-stage pipeline, the
MAC instructions have a latency of 11 clock cycles. The software
design should take care of this MAC latency and use the registers
efficiently, avoiding pipe stalls. The software design resumes to
create an adequate sequence of the Load, Store and Arithmetic
operations that does not create direct dependence of adjacent
instructions.

A simulation of the processor can be found in fig. 1, where it is
shown the control signals and some instructions of the basic core
being tested (time scale in ns, two-phase non-overlaping clock).

These instructions with different number of pipeline stages created
an extra complexity in the control part of the processor, because
there are possible combinations of subsequent instructions that try
to write simultaneously in the register bank. A controller that can
handle this situations was modeled, and new simulations were
made. The result has shown that the critical path had became the
controller, which lasts 15.6ns. This fact is a critical limitation in
processor performance, and the adopted solution is to use the
simplest version of the controller, that can’t handle this situation.
This possibility should be avoided by the compiler or by the
programmer.

6. PERFORMANCE ANALYSIS

The basic RISC core (without multiply instructions), implemented in
VHDL, was compiled and simulated using SynopsysTM Design
Compiler and SynopsysTM VSS with AlteraTM libraries for Flex10k
FPGA. The FPGA actually available for this work is
FLEX10K70RC240-4. The simulations have shown that the critical
path for the entire processor is the ADD instruction, which lasts
30.2ns. To achieve the maximum period of 11.408ns, the instruction
was subdivided into 3 stages in a pipeline scheme. This implies that,
if subsequent instructions depends on the previous one, 2 clock
cycles will be lost. Since iDCT calculations can be arranged to
avoid this situation, this restriction is not going to be a problem.

Others simulations involving the HADD instruction have shown
that it lasts 23.3ns, which is less than the ADD instruction, but it
also had to be divided into 3 stages in the same pipeline scheme.
The same restrictions of the ADD apply to HADD.

The same procedure was used to evaluate the latency of the
HADDAC instruction, which does the double of the sums of the
HADD instruction. It lasts 49.7ns, and was divided into 5 stages in
the same pipeline.

The iDCT software has to be made in Assembly, because it is a
critical operation and should be optimized at maximum. The results
of the MAC operations showed that the MAC instruction lasts
68.4ns for 32 bit data bus (2 multiplications simultaneously

Fig. 1 – Simulation of the RISC core modeled in VHDL (vhdldbx)

and 2 sums). Again, we adopted the technique of pipelining to
divide the MAC instruction into 8 stages. In principle, 7 stages
would be enough, but to allow an additional clock increase, 8 stages
were adopted. Since the RISC core has already a 4-stage pipeline,
the MAC instructions have a latency of 11 clock cycles. The
software design should take care of this MAC latency and use the
registers efficiently, avoiding pipe stalls. The software design
resumes to create an adequate sequence of the Load, Store and
Arithmetic operations that does not create direct dependence of
adjacent instructions.

A simulation of the processor can be found in fig. 1, where it is
shown the control signals and some instructions of the basic core
being tested (time scale in ns, two-phase non-overlaping clock).

These instructions with different number of pipeline stages created
an extra complexity in the control part of the processor, because
there are possible combinations of subsequent instructions that try
to write simultaneously in the register bank. A controller that can
handle this situations was modeled, and new simulations were
made. The result has shown that the critical path had became the
controller, which lasts 15.6ns. This fact is a critical limitation in
processor performance, and the adopted solution is to use the
simplest version of the controller, that can’t handle this situation.

This possibility should be avoided by the compiler or by the
programmer.

7. HIGH DEFINITION TELEVISION
REQUIREMENTS

As the HDTV resolution (1920 x 1080 pixels) is 6.75 times larger
than the standard definition TV (640 x 480 pixels) [16], the iDCT
time must be 6.75 times smaller, which implies that the developed
processor should be 6.75 times faster, which is impossible using
actual FPGAs. Then, the approach used in this Hardware/Software
Co-Design cannot be applied to HDTV MPEG-2 decoding. As in
the SDTV iDCT the maximum time is 1.736us, we have that for
HDTV the maximum is 257.2ns. Using the FPGA available for this
work (Altera FLEX10KRC240-4), such performance is impossible.
So, the Co-Design of a system capable of HDTV decoding was
made based only on simulation. Another approach was used:
instead of implementing the iDCT basic operations (MAC) into
specific instructions, the entire unidimensional 8-point iDCT core
was modeled in VHDL (using 24 bit fixed point arithmetic). This
implementation occupies a lot of chip area, and some simulations
were made using as target device Xilinx XCV1000E-680C-8 (from
Virtex Enhanced Family of FPGAs). Due to the current

unavailability of specific libraries for SynopsysTM Design Compiler,
Xilinx Foundation Express 2.1i was used.

The IDCT instruction was added to the RISC core, and was
designed within the following methodologies: the AAN algorithm
was expanded into a big set of sums and shifts; the shift operations
become simply displaced inputs to the adders (which was no
computational cost, instead of in the software implementation);
constant multiplications are expanded into customized adders (with
shifted inputs in accordance with the constant values); and flip-
flops are inserted in strategic positions of the iDCT core to provide
multiple stages division (pipelining).

This IDCT instruction uses 4 registers (eight 16-bit inputs), and
writes the results to the same registers (but the internal calculations
of the core are made using 24 bits). This implementation avoided
the use of specific registers because it would be necessary to use
more instructions to move data to these registers, and more
processing time would be spent just to move data. Again, control
systems to avoid out-of-order instruction execution were not
created, leaving this task to the compiler or to the programmer.

The results shown an FPGA occupation of 731 slices, which means
more than 93000 gates, which demands the use of extremely large
FPGAs; the achived time is 51.18ns for the unidimensional iDCT.
Then, to complete the 8x8 iDCT it is necessary to run 16 IDCT
instructions in sequence, resulting in a time of 818.9ns. As the
required time for the iDCT is 252.7ns, the division of the iDCT
core in 6 stages (to achieve a 100MHz FPGA clock) was enough.
Multiple iDCTs cores implementation was discarded due to the
huge area occupation, enabling the use of smaller Virtex FPGAs.

8. FUTURE WORK

There are several improvements that can be done. The first one is
to implement and test in faster FPGAs (like Xilinx Virtex and
Altera Apex). This will allow us to run higher clock frequencies.
The second is to expand the bus to 64-bit and add more registers.
This can easily be done, because the VHDL processor code was
made using extensively the generic directives, which determines
the entire bus size. The third is to buy FPGAs with a great number
of pins, which will allow the physical implementation of a 64-bit
RISC core.

One of the goals of this project is to achieve data rates necessary
to decode High Definition Television (HDTV), which is possible
with adoption of an special instruction that demands much more
area than all the remaining portion of the processor: the IDCT
instruction, which is a severe limitation to the possible FPGAs to be
used in this design. To reduce this limitation, we intend to work on
a super-scalar version of the microprocessor core, and create more
variants of the MAC instruction, to enable the processor to run
several multiplications and accumulations in only one clock cycle.

Other related works can be the implementation of a MPEG-4
software decoder using this RISC core processor and maybe the
addition of new instructions designed to accelerate MPEG-4
decoding.

9. CONCLUSIONS

MPEG video can also be one field of application of reconfigurable
computing by using Hardware/Software Co-Design. In this work,
we are exploring the reconfigurable computing resources in the
digital video field. The achieved results comply with the needs, and
can easily be implemented to work with Digital SDTV. To operate
with HDTV, the technique presented in this paper will be improved,
using faster FPGAs and larger data bus. The main contribution of
this research is to allow the construction of very long lifetime digital
Set-Top-Box, which can represent a reasonable economy for cable
TV providers and subscribers. New researches are going to be
done to implement and test the designed RISC core in huge and
fast FPGAs capable of handle with HDTV data in real time.

10. REFERENCES

[1] Advanced Television Systems Committee (ATSC) standards
(http://www.atsc.org)

[2] Digital Video Broadcasting (DVB) standards
(http://www.dvb.org)

[3] E. Feig and S. Winograd. “Fast Algorithms for the Discrete
Cosine Transform”. IEEE Transactions on Signal
Processing, vol. 40, no. 9, pages 2174-2193, Sep. 1992

[4] C. Loeffer, A. Ligtenberg, and G. S. Moschytz “Practical fast
1D DCT algorithms with 11 multiplications”. Proceedings
ICASSP 1989, pages 988-991, 1989.

[5] Y. Arai, T. Agui, and M. Nakajima “A Fast DCT-SQ scheme
for images”. Transactions on IEICE, vol. E-71, no.11,
pages 1095-1097, Nov1988.

[6] A. Fauth, J. Van Praet and M. Freericks. “Describing
Instruction Set Processor using nMLx”. Proceedings
European Design and Test Conference, Paris, Mar 1995.

[7] J. Sato et al “An Integrated Design Environment for
Application Specific Instruction Processor”. Proceedings
ICCD, pages 414-417. 1991.

[8] B. Holmer “Automatic Design of Computer Instruction Sets”
University of California at Berkeley, Ph.D. dissertation,
1993.

[9] I. Huang, A. M. Despain “Synthesis of Application Instruction
Sets”. IEEE Transactions on CAD of Integrated Circuits
and Systems, vol.14, no.6, pages 663-675, June 1995.

[10] Peter M. Athanas and Harvey F. Silverman “Processor
reconfiguration through instruction-set methamorphosis”.
IEEE Computer. vol. 26, no.3, pages 11-18, Mar 1993.

[11] B. Schackleford, M. Ysuda, E. Okushi and H. Koizumi “The
Integrated Processor Synthesis and Compiler Generations
Systems”. SASIMI. pages 135-142, Nov 1996.

[12] R. Lee “Subword parallelism with MAX-2”. IEEE Micro,
vol.16, no, pages 51-59, 1996.

[13] J. N. Hennessy and D. A. Patterson “Computer Architecture:
a Quantitative Approach”. Morgan Kaufmann Publishers,
second edition, 1996.

[14] D. Lanner, J. Van Praet, A. Kiflt et al. “CHESS -
Retargetable Code Generator for Embedded DSP
Processor”. Kluwer Academic Publisher, pages 85-103,
1995.

[15] ISO/IEC JTC1/SC29/WG11 MPEG, International Standard
ISO 11172, coding of moving pictures and associated audio
for digital storage media up to 1.5 Mbits/s, 1992

[16] J. Watkinson, MPEG-2, Focal Press 1999

