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Abstract—This work presents a discussion about multi-frame
Super-Resolution Reconstruction (SRR) and single-frame inter-
polation. SRR has been extensively studied in the last decades but
it is not yet as popular as image interpolation. Since both methods
are directed to improve image quality, comparisons are inevitable
and desirable. However, fundamental misunderstandings can
still be found in the literature on the choice between these
two approaches. Recently, some mistaken conclusions have been
reached regarding the SRR performance. This paper clarifies
important SRR issues in image reconstruction, in contrast to
interpolation. For reasons further discussed, two algorithms are
considered: bicubic interpolation and LMS-SRR.

I. INTRODUCTION

Image interpolation and Super-Resolution Reconstruction
(SRR) are two techniques frequently employed to increase
the resolution of a digital image. In interpolation, the number
of image pixels is increased based on the statistics of the
whole image, on a neighborhood of each pixel, or on a priori
information about the image [1]. This a priori information is
usually the same for all images processed by the algorithm.
Thus, both the low-resolution (LR) and the interpolated high-
resolution (HR) images contain the same information, except
for the a priori knowledge included in the algorithm.

SRR combines multiple different LR images of the same
scene or object to form a higher resolution image. It requires
two steps: registration and fusion. Registration aligns the
images, i.e., estimates the motion of pixels from one LR image
to the others. The second step fuses the multiple (aligned)
LR images into the HR one. Reference [2] reviews several
important results on SRR available in the literature.

The major issues in SRR algorithms are: (i) dependence
on an accurate registration [3], [4], [5]; (ii) dependence on
outliers [6]; (iii) computational cost. Under inaccurate regis-
tration, SRR may lead to image degradation instead of image
improvement. This degradation is usually called registration
error noise and depends on the characteristics of both the
registration algorithm and the image being processed [7].
Outliers are defined as data points whose distributions do not
follow the assumed model. In the context of motion, outliers
are often regions that have suddenly been occluded or appeared
in the image, i.e., the innovations from one scene to the next.
Computational cost is important for real-time applications and
is usually traded off for performance.
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Some unclear concepts have been frequently published in
this subject. For example, in [8] an interpolation algorithm is
proposed as being a single-frame SRR. In [1], several interpo-
lation methods have been tested for video reconstruction and
compared among themselves and with the least mean square
(LMS-SRR) algorithm proposed in [9], [10]. The LMS-SRR
was considered in this comparison since its simplicity to solve
the SRR problem makes it an interesting solution for real-
time applications such as SRR of video sequences. Properly
designed, the LMS-SRR has desirable properties when in
presence of registration errors and outliers, both unavoidable
in real applications [11]. Objective and subjective evaluations
were presented. The main conclusion was that the Bicubic
interpolation is the best candidate to be applied in the video
reconstruction. When compared with LMS-SRR, Bicubic in-
terpolation presented the same Peak Signal to Noise Ratio
(PSNR). However, important SRR issues, such as registration
errors and regularization were not considered in [1].

In this work we clarify important aspects of SRR and inter-
polation. We show that Bicubic interpolation is not competitive
with LMS-SRR, and therefore with SRR, unless under severe
registration errors. Contrary to what is suggested in [1], we
also show that their computational costs are similar.

Notation and the signal models are defined in Section II. In
sections III and IV the Bicubic interpolation and LMS-SRR
algorithms are briefly presented. In Section V, interpolation
and super-resolution are discussed. In Section VI, image
reconstruction results obtained using Bicubic interpolation
and LMS-SRR algorithms are presented. Finally, Section VII
concludes this work.

II. NOTATION AND SIGNAL MODELS

Hereafter, bold lowercase letters denote column vectors and
bold uppercase letters denote matrices. The variable t is integer
and indexes discrete-time samples of images and operators. We
refer to the observed (low-resolution) images as LR images,
and to both the original (desired) and the reconstructed high-
resolution images as HR images.

Given the N×N matrix representation of an LR (observed)
digital image Y(t) and an M × M (M > N ) matrix
representation of the original HR digital image X(t), the
acquisition process can be modeled as [2]

y(t) = DH(t)x(t) + e(t) , (1)



where vectors y(t) (N2 × 1) and x(t) (M2 × 1) are the
lexicographic representations of the degraded and original
images, respectively, at discrete time instant t. D(t) is an
N2 × M2 decimation matrix and models the subsampling
taking place in the sensor. H(t) is an M2 ×M2 time-variant
matrix that models the blurring. Here, it is assumed known.
The N2 × 1 vector e(t) models the observation (electronic)
noise, whose properties are assumed to be determined from
camera tests.

The dynamics of the input signal is modeled by

x(t) = G(t)x(t− 1) + s(t) , (2)

where G(t) is the warp matrix that describes the relative
displacement from x(t − 1) to x(t). Vector s(t) models the
innovations in x(t).

III. BICUBIC INTERPOLATION

Interpolation is usually performed by up-sampling followed
by low-pass filtering. Thus, interpolated pixel values are based
on their neighbors’. For computational complexity reasons, in-
terpolation is usually limited to a 4×4 pixel neighborhood. The
generalized Bicubic interpolation function can be expressed as
[12]:

x̃r′,c′(t)=
2∑

m=−1

2∑
n=−1

ỹr+m,c+n(t)h(m−r′+r)h(c′− c−n) ,

(3)
where ỹr,c(t) is the pixel in position (r, c) of the image
represented by ỹ(t) = DTy(t). It corresponds to the nearest
neighbor to the interpolated pixel x̃r′,c′(t). h(·) denotes the
bicubic interpolation function.

IV. THE LMS-SRR
The LMS-SRR algorithm attempts to minimize the mean-

square error (MSE) E{∥ϵ(t)∥2} [9], where ϵ(t) = y(t) −
DH(t)x̂(t), x̂(t) is the estimate of x(t) and E{·} de-
notes statistical expectation. The cost function is JMS(t) =
E{∥ϵ(t)∥2 | x̂(t)}. The steepest descent update of x̂(t) is in
the negative direction of the gradient

∇JMS(t)=
∂JMS(t)

∂x̂(t)
=−2HT(t)DT{E[y(t)]−DH(t)x̂(t)} (4)

and thus x̂k+1(t) = x̂k(t)− (µ/2)∇JMS(t).
The LMS-SRR algorithm is the stochastic version of the

steepest descent algorithm. Using the instantaneous estimate
of (4) yields

x̂k+1(t) = x̂k(t) + µHT(t)DT[y(t)−DH(t)x̂k(t)] , (5)

which is the LMS-SRR update equation for a fixed t and for
k = 1, . . . ,K. The time update of (5) is based on the signal
dynamics (2), and performed by x̂0(t+ 1) = G(t+ 1)x̂K(t).

Using the latter expression in (5), solving for a time recur-
sion in x̂K(t), and dropping the subscript K for simplicity,
yields the LMS-SRR recursion

x̂(t) = AK(t)G(t)x̂(t− 1) + µ
K−1∑
n=0

An(t)HT(t)DTy(t) , (6)

where A(t) = [I− µHT(t)DTDH(t)].

V. SUPER-RESOLUTION versus INTERPOLATION

SRR performs data fusion from more than one LR sources
into one output HR image. These sources may be distinct
views of an object, acquired with the same image sensor in the
presence of relative motion between sensor and object. In the
absence of motion, acquisitions made by distinct sensors (with
distinct degradation systems [2]) may be used. Differently
from image interpolation, an HR reconstructed image obtained
via SRR contains more information than available in one single
LR image. The HR image is then perceptually much superior
to that obtained by interpolation. Thus, the term (single-frame)
super-resolution [1], [8] seems inadequate to be applied to
image interpolation.

The drawbacks of traditional SRR techniques in compar-
ison to image interpolation are: (i) computational cost; (ii)
need for motion estimation (registration); (iii) sensitivity to
registration errors and outliers. The high computational costs
of SRR algorithms usually render them useless for real-time
video applications. Fast algorithms such as LMS-SRR are
competitive with interpolation in cost, except for the required
pre-processing. The required image registration step may be as
computationally expensive (or even more) than the algorithm
itself. SRR algorithms are very sensitive to registration errors
and to outliers. Faster registration algorithms usually lead to
larger registration errors and worse reconstruction results. In
the presence of outliers, interpolation may be preferable to
SRR, which may result in corruption by artifacts in certain
applications.

Adaptive algorithms such as LMS-SRR make SRR feasible
for real-time applications at the cost of somehow worse recon-
struction results. Nevertheless, the LMS-SRR results tend to be
much better than those obtained by Bicubic interpolation. The
choice between image interpolation and SRR is a commitment
to the application. The characteristics required from the results,
motion complexity and computational cost must be considered.
For the video industry [1], subjective aspects of the image
are very important. In this case, a blurred image (with serious
frequency spectrum restrictions) may be preferred to an image
with artifacts (not natural aspect) but containing more visible
details. On the other hand, SRR would be preferred to image
interpolation for reading a small text in a natural scene
background.

The results presented in [1] seem biased by a bad choice
of registration algorithm. The full-search block matching al-
gorithm (with block size 16× 16) used in [1] is adequate for
a block-translational motion. However, the video sequences
assessed also present zooming, affine and other types of
motion. Thus, the SRR error images shown were probably
mostly due to registration error noise, instead of reconstruction
errors from the LMS-SRR algorithm. With a proper design,
the LMS-SRR will converge to better reconstruction results
[6] than Bicubic interpolation. In fact, it is usual to initialize
the algorithm (x̂0(1)) with the Bicubic interpolation of the
first observed LR frame (y(1)). Thus, only a sub-optimal



implementation of the LMS-SRR algorithm can explain the
performance evaluation results reported in [1]. In the next
section we present an evaluation of both Bicubic and LMS-
SRR algorithms where the effects of the reconstruction (LMS-
SRR) and the registration are isolated.

Regarding computational complexity, LMS-SRR requires
K(2p2+1)N2/M2 multiplications per output pixel [9], where
p is the size of the blur kernel used in H(t). From (3),
Bicubic interpolation requires 16 multiplications per pixel.
Assuming a practical implementation of the LMS-SRR with
K = 1 [6] and a 4 × 4 blur kernel, this algorithm requires
33N2/M2 multiplications. Thus, for an output image with
M2 = 1920 × 1080 pixels (Full HDTV format) and a
decimation factor of 2, 8.25 multiplications per output pixel
are required. This is about half the Bicubic interpolation
computational complexity. Even considering that a detailed
comparison should include the contributions of all floating
point operations and of the registration algorithm required by
LMS-SRR, this simple comparison shows that the LMS-SRR
algorithm is competitive with Bicubic interpolation in terms of
computational burden. The complexity of the pre-processing
(registration step) required by SRR is O[(2s+1)2M2], where
s is the assumed maximum displacement of the pixels in any
direction [13], [7]. Considering s = 4, it results in approx-
imately 81 operations per pixel. However, some applications
allow global image displacement approximation [11] and, in
these cases, it is not necessary to consider the whole image
in the registration step. When this approximation is allowed,
using an M/4×M/4 sub-image in the registration step it can
decreases to approximately 5 operations per pixel.

VI. EXPERIMENTAL RESULTS

This section presents four simulation examples designed
to compare the Bicubic interpolation and the LMS-SRR re-
construction results. The level of registration errors is pro-
gressively increased to clearly show its role in the overall
reconstruction performance. The first example is for a known
motion. Thus, no registration errors are present in SRR. For
the following three examples, a real registration algorithm [7]
is used. Thus, registration errors become present. The level of
registration errors increases for each new simulation.

In all simulations, the additive noise vector e(t) was
modeled as a zero mean and gaussian process WGN(0, 10).
Neumann boundary conditions were considered in the imple-
mentation of the warp matrix for the LMS-SRR algorithm.
The LMS-SRR parameters were designed according to [6].
In the first two examples DH(t) modeled blurring through a
2 × 2 mean filter performed over an impulsive subsampling.
In the last two examples the filter mask becomes 4× 4. Error
images (absolute difference between original HR image and
reconstructed HR image) are shown multiplied by a factor of
two for better visualization.

A. Example 1: the known motion case

The only way to implement a known motion video is
through synthetic sequences. A pure global and translational

(a)

(b)

(c)

Fig. 1. Reconstruction results: (a) 50th observed LR frame; (b) Bicubic
interpolation of (a); (c) LMS-SRR result.

motion sequence with 50 frames was created by cropping
a larger still image. The motion was created by random
independent and identically-distributed displacements of sizes
zero or one at each time instant t and in each direction (vertical
and horizontal) in the HR space. This movement simulates a
camera shaking. 240×240 HR and 120×120 LR images were
used.

Figure 1 shows the 50th: (a) observed LR frame; (b)
interpolated HR frame; (c) LMS-SRR result. The 50th frame
error images are presented in Figure 2. The LMS-SRR results
are clearly superior to the interpolation results. The evolution
of the spatial mean square reconstruction error is presented
in Figure 3, where v(t) = x(t) − x̂(t). The PSNR achieved
for this frame was 25.47dB for LMS-SRR and 18.58dB for
Bicubic interpolation.

B. Example 2: low levels of registration errors

This simulation used the same sequence of Example 1,
but with a registration algorithm [7] performing the motion
estimation. This algorithm has been proposed for translational
global motion, as synthetically implemented in the sequence.
Thus, it probably leads to low registration error levels in this



(a)

(b)

Fig. 2. Error images for the 50th frame: (a) Bicubic interpolation (b) LMS-
SRR.
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Fig. 3. Spacial mean square reconstruction error evolution.

case. Although it was possible, hereafter the registration was
willfully not performed by blocks, but in the hole image.

Figure 4(a) shows the reconstruction result for the 50th

frame using the LMS-SRR algorithm. Figure 4(b) shows the
respective error image. The results achieved by the LMS-SRR
are once again clearly superior to the interpolation ones (figs
1(b) and 2(a)). The PSNR achieved by the LMS-SRR was
24.64dB (against 18.58dB for Bicubic interpolation).

C. Example 3: moderate levels of registration errors

A real sequence was used for this simulation. This sequence
presents an approximately horizontal displacement of a toy
over a still background. The actual motion can be approx-

(a)

(b)

Fig. 4. LMS-SRR results for the 50th frame and low level of registration
errors: (a) reconstruction result (b) error image.

imated as being global in this case, since the background
is smooth. However, the used registration algorithm [7] will
probably lead to higher registration errors than in Example 2,
where the motion was truly global and translational.

Here a decimation factor of 4 (240×240 HR and 60×60 LR
images) has been used to amplify some characteristics of the
algorithms and to yield a better visualization. Figure 5 shows
the 50th: (a) observed LR frame; (b) interpolated HR frame;
(c) LMS-SRR result. The result achieved by the LMS-SRR
algorithm is still superior to that obtained by interpolation.
The PSNR achieved for this frame was 33.13dB for LMS-
SRR and 29.79dB for Bicubic interpolation.

D. Example 4: high levels of registration errors

The first 50 frames from Mobile sequence were used in
this example. This sequence presents a non-global translational
motion. Hence, the applied registration algorithm [7] is not
capable of correctly estimate the motion, leading to high levels
of registration errors.

As in Example 3, a decimation factor of 4 was used:
240 × 240 (top-left pixels of each frame) HR and 60 × 60
LR images. Figure 6 shows the 50th: (a) observed LR frame;
(b) interpolated HR frame; (c) LMS-SRR result. The result
achieved by the LMS-SRR algorithm is apparently worse
than that obtained by interpolation. The PSNR achieved for
this frame was 17.05dB for LMS-SRR and 16.70dB for
Bicubic interpolation. Note that the aspect of the LMS-SRR
result could be improved using regularization (smoothing the
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Fig. 5. Reconstruction results under moderate levels of registration errors: (a) 50th observed LR frame; (b) Bicubic interpolation of (a); (c) LMS-SRR result.
Figures (b) and (c) are scaled by a factor of 0.5 for space purposes.

(a)

(b)

(c)
Fig. 6. Reconstruction results under high levels of registration errors: (a)
50th observed LR frame; (b) Bicubic interpolation of (a); (c) LMS-SRR
result. Figures (b) and (c) are scaled by a factor of 0.5 for space purposes.

solution). This would lead to an image quality more similar
to the Bicubic interpolation result.

VII. CONCLUSIONS

This work discussed the comparative evaluation of inter-
polation and super-resolution reconstruction (SRR). These are

the two most employed techniques to increase the resolution
of digital images. More specifically, the performances of
the Bicubic interpolation and the LMS-SRR algorithms were
compared. The main conclusions of this comparison are: (i)
interpolation is not competitive with SRR in general; (ii)
the LMS-SRR algorithm is computationally competitive with
Bicubic interpolation; (iii) under small or average registration
errors, reconstruction results obtained using LMS-SRR are
far superior to those obtained using Bicubic interpolation;
(iv) under severe registration errors and considering objective
metrics, the results obtained using either LMS-SRR or Bicubic
interpolation tend to be similar.
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