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ABSTRACT minimum order systems, permit convergence control and provide
a better insight into the problem.

This paper proposes an extension of the analytical compensatiof\nalytical approaches for the compensation of the xsin )/
method for the sample-and-hold distortion presented in [1]. Thatdistortion include the system design with compensation [8] or
distortion can introduce a degradation of up to 4 dB in the only the adjustment of an existing system transfer function [9].
magnitude of the system frequency response. The proposedrhe former approach may increase the order of the system. The
compensation method adjusts the system parameters withoulatter adjusts the coefficients of the existing system. Usually
changing the system order. Using an adequate set of adjustmergystem adjustment is a more cost-effective solution whenever a
frequencies, we obtain new parameters by solving a linear systentransfer function is already available. Among the existing
of equations. Following the adjustment, we apply frequency analytical adjustment techniques, some are iterative [5,9] and
scaling to the transfer function. The method is applicable to other are non-iterative [4,9] methods. Non-iterative methods
monotonic and equiripple (Butterworth, Legendre, Chebyshev, determine the compensated system function in one step. They
Cauer, etc.) approximations. Examples are given to illustrate theusually require smaller computational effort as compared with
compensation accuracy. Results indicate a better compensatiothe iterative methods. On the other hand, iterative methods
than existing iterative and non-iterative techniques. equalize the distortion sequentially at a set of adjustment
frequencies over a number of iterations, which may provide
better compensation results than the non-iterative approaches.

1. INTRODUCTION This paper presents an extension of the analytical approach to

Continuous-time  signals are often processed by digital or COMPensate for the (sin ¥/ distortion introduced in [1]. Now,
sampled-data systems. In those systems, the interpolation procedfe method is applicable to monotonic and equiripple
distorts the frequency spectrum of the continuous-time output(Butterworth, Legendre, Chebyshev, Cauer, etc.) approximations.
signal. The most important distortion is the well-known It compensates for the distortion at every adjustment frequency in
(sinx)/x, which introduces a significant distortion (up to 4 dB) & Single step. However, successive application of the method
for low sampling-to-signal frequency ratios [2-5]. Thus, many further reduces the distortion. By using an adequate set of

practical processing systems require fsirx )équalization. To f_requenmes and assuming small pol_e dlsplapement, we f"?d a
. . o . linear system of equations. The solution of this set of equations
achieve this equalization, we look for a new transfer function to

. . : . .~ produces the parameters of the compensated system. Following
accomplish both the required signal processing and equalizatio he adjustment, we apply frequency scaling to the transfer
[2-6]. Moreover, we would

o : g I|_ke to achleve_ the necessary function. The method leads to compensation results comparable
equalization with minimum design effort and little dependence y, yh,se obtained by the best techniques. The achieved accuracy
on the_de3|gners_ex:oertls_e._ . hni is compatible with the usual precision level limitations imposed
By using numerical optimization techniques [2,7], one can by component precision and signal quantization. Examples using

achieve accurate distortion compensation. Applicayions_ thatmonotonic and equiripple approximations illustrate abeuracy
require optimization include the design of nonsymmetrical filters of the method

and the frequency response approximation with simultaneous

specification of magnitude and phase. The accuracy and 2. COMPENSATION METHOD

convergence are strongly dependent on both the system order and

the initial set of adjustment frequencies. In general, to achieve an et ys consider ars-domain transfer functionH s(.) This

adequate compensation one requires expertise on Optimizatior]’unction may represent an analog reconstruction filter or a

techniques. Moreover, num_encal optimizations may increase thediscrete-time system. In the latter, we can deterntine from
system order and the associated hardware [6].

These issues justify the search for simpler and efficient the zdomain transfer function through zto-s transformation.

compensation methodology. Analytical equalization methods For this purpose, the inverse bilinear transformation is much

have been proposed for specific distortion problems [2,4-6] whenUS€d [5.9]. Since the processing system and the distortion are
enough information is available. Typical examples are both in the signal path, it is possible to reduce the overall output

compensation for the (sin ¥/ distortion and rolloff in  SPectral distortion by compensatiftd(jc) [9].
telephone channels. Analytical methods usually produce Consider am-th order transfer functiotd s( given by
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Application of (5) at R adjustment frequencies leads to a linear
system of R equations inAa and Ab. Thus, for a set

A={w, w,...,w,} of adjustment frequencies, (5) yields
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The spectral distortion caused by a D/A conversion can bewhere
modeled by the function [9]: 0|H(' )|
- W
Vo)== = (72)
S(w) = S(w) &' @ and
where 0|H (ju)
() ,bl =1 - 7 . 7b
sa(w)=sm(“’”2) (“b) b |jw=w, (70)
(wt/2)
oa=1/T,

T is the width of the sampling pulse,
T, =1/ f = 2n/wy is the sampling period,
w is the frequency in rad/s.

Thus, we model the system frequency resporidg(jw)
including the distortion by:
[Hq (i) =[H (j)|S(w)], 3

for H(jw) (the desired frequency response) given by (1) with
= jw.

The new parameter§ and li of the modified transfer function
H,(s) are then

4 =g3+0a andh =h +AR, )

for i =1,2,.. k. The choice of a s& of adjustment frequencies
affects the compensation results. We discuss this issue in the
following section.

3. CHOICE OF THE ADJUSTMENT
FREQUENCIES

The compensation can be achieved by adjusting the coefficientsThis method requires a choice of the frequencies where the

g and b (=1..k)of H(s).
generates a modified function H,,(jw)

Ideally, that compensation
that

[Hn(jo)||S(w)| =|H(jw)| at the adjustment frequencies. At

such

distortion is to be minimized. However, we are restricted to a set
of 2k frequencies, since k2is the number of parameters; (

and by ) to adjust.
Most practical filtering applications uses two major classes of

those frequencies, the compensation causes a correction cpproximation functions: those with equiripple magnitude in the

A|H(joo)| in the system frequency response, given by

I(J W)

4

AH(jw)|=[Hp (o) -H (W)= -H G w).

Assuming independent and small parameter chargges and
Ay, we can approximate the correctioiH (jw)| by:

passband (such as Cauer and Chebyshev), and those with
monotonic passband (such as Butterworth, Legendre and Inverse
Chebyshev). We propose different strategies for choosing the
adjustment frequencies for each of these classes.

For equiripple functions, the magnitudes at the peaks and valleys
of the passband frequency response are very important.
Minimization of the magnitude distortion at those points also
restrains it to the specified passband ripple. Thus, we choose the
frequencies corresponding to the maxima and minima of the
desired passband frequency response as adjustment frequencies.



For functions with monotonic passband behavior, such as 6. EXAMPLES AND COMPARISONS

Butterworth and Inverse Chebyshev, the choice of adjustment

frequencies is based on a logarithmic distribution within the _ . .
- A This section presents several examples to demonstrate the
passband. For Legendre monotonic approximation, one uses the ~. ~ .. .
applicability of the proposed compensation method. The

adjustment frequencies, , such that | (2 )| -0. selec‘qon _of adjL_Jstment frequencies is based on the criteria
~ explained in Section 3.
=0 Figures 1 to 3 illustrate the method application to a transfer

function based on an 8-th order Butterworth function. Figures 4

to 6 depict the results for a 4-th order Chebyshev function.
4. REPEATED APPLICATIONS OF THE Figures 7 to 9 show the results for a 6-th order Legendre

METHOD function.

We notice a very small difference between the desired and
compensated responses in the passband. Outside the passband
frequencies, the attenuation requirements are met. Moreover, we
approximation is more accurate for smalig, and Ab . The observe a very small change in the phase response due to the

required Aa, and A depend on the distortion amplitude and adjustment.

the characteristics of the desired frequency response. In mo Il examples use three applications of the method followed by_
cases, the set of adjustment frequencies proposed results i equency scaling. For some cases, one last adjustment can still

sufficiently small Aa; and A and it reduces the passband e done.
distortion to acceptable levels. In all cases tested, the distortion

level was reduced. 7. CONCLUSIONS

For more demanding applications, the results obtained from a

smgl_e application of the method may not _satls_fy the design We achieve a significant improvement in accuracy provided by
requirements. We process the remaining distortion as anothe he analytical compensation method. The proposed method can
compensation problem. However, in this case, the passban

- : : o Iso be applied to compensate for the typical rolloff distortion.
distortion has been reduced.by the prewogs application of theThis effect is found in analogue telephone channels [9]. For this
method. Hence, the requiredA|H(jow)| is smaller and

purpose, it is necessary to exchan@w (by the rolloff

We use a first order approximation fajH (jw)| (Eq. (5)). The

approximation (5) will be more accurate. magnitude (or an estimation of it) in all expressions. Other
To reapply the compensation method weaepl(4) by similar distortions may also be compensated by the proposed
method.
o H(w) .
AJH (jo) - ~Hm(jw) 9)
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Fig. 1 - Butterworth 8-th order function— Desired response;
(---) compensated response; (-.-.-) without compensation.
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Fig. 2 - llustrate phase of desired and compensated response for
Butterworth 8-th order.—) Desired response; (---) compensated
response.
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Fig. 3 - lllustrate response in the rejection band for the 8-th
order Butterworth transfer function—) Desired response; (---)
compensated response.
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Fig. 4 -Chebyshev 4-th order.— Desired response; (---)
compensated response; (-.-.-) without compensation.
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Fig. 5 - lllustrate phase of desired and compensated response
for Chebyshev 4-th order.—{ Desired response; (---)
compensated response.
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order Chebyshev transfer function:)(Desired response; (---) for Legendre 6-th order.—) Desired response; (---)
compensated response. compensated response.
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Fig. 7 -Legendre 6-th order.—) Desired response; (---) Fig. 9 - lllustrate response in the rejection band for the 6-th
compensated response; (-.-.-) without compensation. order Legendre transfer function-)(Desired response; (---)

compensated response.



