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Nuclei Detection Using Deep Learning
Eliezer Farrant Braz and Roberto de Alencar Lotufo

Abstract— An important objective in the analysis of Pap smear
images is automatic detection of a cell’s nucleus. Various methods
that automatically detect the nuclei of cervical cells have been
proposed to improve the analysis of screening test images.
In this paper, we propose a Convolutional Neural Networks-
based method that automatically detects the nuclei of cervical
cells. Following training using a public dataset provided by the
Overlapping Cervical Cytology Image Segmentation Challenge
- ISBI 2014, the network’s fully connected layers are converted
to convolutional layers to enable processing of images of any
size. Our results were then compared with those achieved by
other participants who successfully submitted their work to
ISBI 2014 and other studies that used the same dataset. Our
experimental results indicate that the methodology provides fast
nuclei detection with precision and recall that are comparable
with the state-of-the-art methods used to detect the nuclei of
cervical cells.
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I. INTRODUCTION

Cervical cancer is one of the most common causes of cancer
death for women worldwide. It is the fourth most common
cancer type among women in the world and the second in Latin
America [1]. The chances of being cured increase significantly
if diagnosis occurs at an early stage of the disease. Fortunately,
the Papanicolaou test (also known as the Pap test), introduced
by Dr. Georges Papanicolaou in the 1940s, can prevent most
cervical cancers by finding abnormal cervical cell changes
(pre-cancers) such that they can be treated before they have a
chance to turn into cervical cancer.

The Pap test is a screening test, performed by a specialist,
in which cervical cells are examined under a microscope to
ascertain if abnormalities are present. However, one of the
drawbacks of this method is that because of misinterpretations,
inaccuracy, or inexperience, the test may produce inaccurate
results that can have a significant impact on patients’ treat-
ment. To avoid this possibility, researchers have been actively
developing new algorithms to automate the analysis of Pap
smear images in order to achieve reliable and precise test
results.

An important objective in the analysis of Pap smear images
is automatic detection of a cell’s nucleus. This is important
because the nucleus presents significant changes when the cell
is affected by cancer [10]. In the literature, many algorithms
have already been proposed to automatically detect the nuclei
of cervical cells. A Viterbi search-based dual active contour
was used to segment the nuclei of cells by Bamford and Lovell
[2]. Plissiti et al. [9] used watershed transform followed by
Fuzzy C-means clustering to detect and segment cell nuclei.
Watershed transform was also combined with hierarchical
trees by Genctav et al. [3]. Morphological reconstruction and
clustering was used by Plissiti et al. [10].

Guan et al. [19], Li et al. [21], and Saha et al. [24] proposed
techniques based on clustering algorithms. In the techniques
by Guan et al. [19] and Li et al. [21], first a non-linear filter
is used to eliminate most dark small contaminations, and then
K-means clustering is applied to perform nuclei detection. The
technique proposed by Saha et al. [24] introduces a circular
shape function (CSF) to impose a shape constraint over the
clusters formed by the c-means clustering algorithm.

Superpixel is also a very popular nucleus detection ap-
proach. Lee and Kim [12] used superpixel and adaptive thresh-
olding, whereas Tareef et al. [25] extracted feature vectors
based on the shape, texture, and boundaries of the superpixels
and trained an SVM classifier using the feature vectors to
perform nucleus detection. Song et al. [13] and Tareef et
al. [14] used a combination of superpixels and Convolutional
Neural Network (CNN). They first used a clustering algorithm
to generate the superpixels, and then used them to obtain
the patches utilized to train the CNN. In their case, the
learning objective was to make the CNN correctly classify
the patch containing the superpixels into one of three classes:
background, cytoplasm, or nucleus.

Other methods are based on algorithms such as Phansalkar’s
local search from low contrast images [5], and Maximally
Stable Extremal Regions (MSER) [4], [6]. Lu et al. [4]
used MSER in conjunction with an optimization function to
minimize the energy function constrained by some known
properties of the cells. Nosrati and Hamarneh [6] used MSER
combined with Random Decision Forest. Further, a framework
for detecting the nuclei of cells based on Markov Random
Field (MRF) was proposed by Zhao et al. [11].

In many of the methods presented above, cell nucleus
detection is one step in a process aimed at performing a more
general automatic analysis. Therefore, a precise and reliable
method to perform nuclei detection is very important. This
method should also be fast, as other methods have to be used
in the process to perform the cell segmentation.

In this paper, we propose a method based on CNN for detec-
tion of the nuclei of cervical cells in images with overlapped
cells. In contrast to Song et al. [13] and Tareef et al. [14],
the CNN is trained from patches extracted directly from the
training images, in which the central pixel of each training
patch belongs to one of three classes: background, cytoplasm,
or nucleus. This is done with the aim of making the network
learn how to correctly classify the central pixel of the patch.

The remainder of this paper is organized as follows. Section
II describes the materials and methodology applied in the ex-
periments. Section III presents and discusses the experimental
results obtained. Section IV concludes this paper.
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Fig. 1. Example of the images available in the dataset: (a) original image; (b) nuclei annotation; (c) annotation of the first cytoplasm; (d) annotation of the
second cytoplasm.

II. MATERIALS AND METHOD

A. Dataset

In 2014, the International Symposium on Biomedical Imag-
ing took place in Beijing, China. One of the events held in this
Symposium was the Overlapping Cervical Cytology Image
Segmentation Challenge (ISBI 2014), in which the goals
were to perform automatic nuclei detection, and automatic
extraction of the boundaries of individual cytoplasm from
overlapping cervical cytology images. ISBI 2014 provided a
public dataset from which it is possible to download the im-
ages and their respective annotations. This dataset is described
in [4], [7], and [8].

The dataset consists of 16 Extended Depth Field real
cervical cytology images and 945 synthetic images. The 945
synthetic images are divided as follows:

• 45 images for training
• 90 images for testing
• 810 images for evaluation.
All 45 training images and the 90 testing images are anno-

tated. The annotation consists of the ground truth for nuclei,
individual cytoplasm, the number of cells in each image,
and the cytoplasm overlap ratio. The 810 remaining images
can be used by the evaluation code to measure cytoplasm
segmentation. The 16 real images are also annotated; however,
in this case, only the ground truths for nuclei segmentation are
available. A script to generate more synthetic images is also
available. An example of the images comprising the dataset is
given in Figure 1.

As this dataset is used in several of the studies published
in the literature [4], [5], [6], [14], [24], [25], comparison of
study results is relatively easy.

B. Methodology

A CNN [17] is a type of feed-forward neural network that
is based on the structure of the visual cortex in animals. CNNs
are highly suited to work with image processing and have been
applied to solve various problems related to image processing.
They have also been used with success to analyze medical
images in applications such as neuronal segmentation [15],
mitosis detection [16], and skull extraction [20].

We used a lightweight library called Lasagne to construct
the CNN. Lasagne is written in Python and is used to build and
train neural networks in Theano. We trained the network using

an approach similar to that employed by Ciresan et al. [15].
In the approach, square patches with size 95 × 95 pixels are
extracted from the training image in which their central pixel
belongs to one of the target classes. The training objective is
to make the network learn how to classify this central pixel.
In case a pixel is located near the image border, the image is
mirrored to facilitate extraction of the training patch.

The network is trained to classify each pixel as belonging
to one of the following classes: nucleus, cytoplasm, or back-
ground. The network is trained with three classes instead of
only two–nucleus and non-nucleus–for two reasons. First, be-
cause the number of available samples with nuclei is much less
than the number of non-nuclei samples, a three-class approach
is used to somewhat balance the number of samples. Second,
both cytoplasm and background information are important to
differentiate nuclei area from those dark areas of overlapped
cytoplasm that generally occur near cytoplasm borders.

All pixels belonging to nuclei present in the training set
are used. Further, the same number of background pixels
is randomly selected because the background is the easiest
region to correctly classify. Then, it is not necessary to retrieve
more samples from it. In the case of cytoplasm samples, we
calculated the frequency of the pixel levels and chose those in
the 60th percentile because we noticed that the major problem
was to differentiate nuclei from darker parts of the cytoplasm.
After some experimentation, the 60th percentile was chosen
because it provided a good compromise between acquisition
of meaningful cytoplasm samples and class imbalance. It
was observed that retrieving more samples, by increasing the
percentile, did not produce better results. The final training set
was still slightly imbalanced as there were more cytoplasm
samples then nucleus and background samples. However, this
imbalance was not large enough to affect the final result.

We applied Rectified Linear Units [23] to all convolutional
and fully connected layers. In the beginning, the network
started training with a learning rate of 0.005 and momentum
of 0.9. The learning rate subsequently decreased and the
momentum increased after every 10 epochs. In order to avoid
overfitting, a dropout of 0.5 [18] was applied to all fully
connected layers. In addition, an early stopping approach, in
which the training was terminated if the validation loss had
not improved following five consecutive epochs, was used.
The architecture of the network used in this study is shown in
Figure 2.
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Fig. 2. Architecture of the network used for training.

(a) (b) (c)

Fig. 3. Test image, its ground truth and method result: (a) original image;
(b) nuclei annotation; (c) result achieved by the method.

C. Method evaluation

Once the network was trained, all fully connected layers
were changed to convolutional layers [22]. This modification
made it possible to use images of any size as network input.
This also resulted in test results being produced at a faster
pace as the whole test image could be processed at once
instead of having to utilize a sliding window approach. The
result is a pixel density map whose size is smaller than the
input image. As we are interested in object-level detection,
we simply upscaled the density map using linear interpolation
to have the network’s output the same size as the testing
image in order to assess the metrics. The loss in precision is
compensated by results being produced quickly and a network
that is much easier to train.

We used the nuclei detection metric proposed by Genctav
et al. [3] as our evaluation metric. The precision and recall
of nuclei detection is computed by considering the detection
region A and (ground truth) annotation B, in which a correct
detection is represented as follows:

(A ∩B)

A
> 0.6 and

A ∩B

B
> 0.6 (1)

Then, precision and recall are calculated as follows:

precision =
# of correctly detected objects

# of all detected objects
(2)

recall =
# of correctly detected objects

# of all objects in the ground truth
(3)

III. RESULTS

To evaluate our method, we measured the precision and
recall for nuclei-object detection as [3]. Table I compares our
results to some state-of-the-art methods found in the literature.
Fair comparison is guaranteed because all the studies used
the same dataset. From the table, it is clear that our method
achieved significant results. The precision is equivalent to
that of the other methods and the recall achieved is superior.
This is especially interesting considering that there is an error
associated with the resizing of the image and the metrics are
based on having a 60% match of the areas of the ground truth
and obtained result for each nucleus.

TABLE I
OBJECT-LEVEL RESULTS FOR NUCLEI DETECTION

Method Precision Recall
Lu et al. [4] 0.977 0.883

Ushizima et al. [5] 0.959 0.895
Nosrati et al. [6] 0.903 0.893
Saha et al. [24] 0.918 0.915

Tareef et al. [25] 0.99 0.94
Tareef et al. [14] 0.994 0.911

Our method 0.929 0.917

Figure 3 shows a test image, its nuclei annotation, and the
output of our method. In this figure, it can be seen that all
nuclei were correctly detected and, although we carried out
linear interpolation to make the output the same size as the
test image, the shape, size, and position of all nuclei are very
similar to those of the annotation image.

The average running time on the synthetic dataset by the
method by Ushizima et al. [5] is approximately 2 s per cell seg-
mentation using an un-optimized Fiji script on a Cray XC30
supercomputer with a 12-core Intel ”Ivy Bridge” processor
at 2.4 GHz and 64 GB RAM. In the case of Nosrati et al.
[6], the proposed method segments each cell in approximately
4 s using un-optimized MATLAB code running on a 3.4
GHz CPU with 16 GB RAM. In [4], the running time is
approximately 50 s per cell segmentation using un-optimized
MATLAB code on a PC with a 2.66 GHz Intel Core 2 Duo
processor and 8 GB RAM. In the method proposed by Tareef
et al. [25], the average time per cell for nuclei segmentation
was 18.25 s using non-optimized MATLAB code on a PC with
a 3.2 GHz Intel Core i5 processor and 8 GB RAM.

We ran all 90 test images in the network described in
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(a) (b)

Fig. 4. Example of a result with a missing nucleus: (a) original image; (b)
network output.

(a) (b) (c)

Fig. 5. Example of a detected nucleus that does not meet the conditions in
Equation 1 (a) original image; (b) nuclei annotation; (c) network output.

Section II-A in a total execution time of 335.16 s, with average
execution time per image of 3.72 s using a PC with an Intel i7-
3632QM 2.20 GHz CPU with 8 GB of RAM. The execution
time per image was not affected by the number of cells present
in the image. This suggests that it is possible to use the
proposed method for nuclei detection in the methods above
without much impact, if any, on their overall execution time.

There are two situations in which some improvement can be
achieved. In the first situation, if there are two or more nuclei
very close to each other, the network may not detect one of
the nuclei. This situation is depicted in Figure 4. It is clear
that in the central part of the result image–marked with a red
circle–one nucleus is missing. The second case occurs when
a nucleus is detected but it does not achieve the condition
established in Equation 1. This situation is shown in Figure
5–the problem is highlighted by the yellow circles.

IV. CONCLUSIONS

Nuclei detection is an important step towards segmentation
of cells in an image. Over the years, many methods have
been developed that rely on nuclei detection to perform
segmentation. Therefore, a fast, accurate, and reliable method
to perform nuclei detection is very desirable. In this study,
we developed a method that detects nuclei in overlapped cells
using the convolutional neural network deep learning tech-
nique. We showed that once the convolutional neural network
is trained, with a simple modification a fast and accurate
method to perform nuclei detection is obtained that achieves
results comparable with those achieved by the state-of-the-art
methods. The proposed method processes images very quickly
and, in the future, it may be used as an intermediate step in
methods aimed at cellular structure segmentation and analysis.
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