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ABSTRACT

Blending surfaces are extensively used for graphics

modeling. Recently, we proposed a still image coding

using these surfaces. These surfaces are completely de-

�ned by their control points. The usual approach is to

partition an image or a 3D object into regions of same

shape. Each region is represented by one blending sur-

face. However, a surface shares control points with

the neighboring regions. This results in a dependence

problem which cannot be addressed by traditional tech-

niques like Loyd-Max quantization or Laplacian opti-

mization.

We describe an iterative greedy algorithm to ad-

dress this problem and eÆciently quantize these con-

trol points. It has a computational time complexity of

O(n � log(n)), for n control points. Examples of ap-

plication of the algorithm are provided for still image

coding and encoding of VRML �les. We achieved an

excellent tradeo� between bit-rate and distortion as il-

lustrated by comparisons to uniform quantization.

Keywords: Image Coding, Data Compression,

Blending Surfaces, Bit Allocation and Data Quanti-

zation.

1. INTRODUCTION TO BLENDING

SURFACES

Images and 3D objects can be eÆciently represented

by blending surfaces. Examples of 2D representations

by these parameterized surfaces are presented in [9, 7].

These surfaces are extensively used to represent 3D ob-

jects in many graphics applications [1, 6]. The popu-

lar �le format for representing 3D objects, the VRML

(Virtual Reality Modeling Language), also uses blend-

ing surfaces [3]. In the literature, many techniques split

regions into separate patches and represent each patch

by a surface constructed by B�ezier polynomials [1, 6] .

Usually, the blending surface representation of im-

ages/objects is based on two steps: 1) the image/object

is partitioned into small regions; 2) each region is rep-

resented by a polynomial blending surface. The parti-

tioning process splits the image/object into regions of

di�erent areas presenting a same regular shape. In this

way, the locations inside the region can be parameter-

ized. Triangular shape is used in [9, 7, 15]. Rectangular

shape is also popular in many partitioning algorithms,

as for example, in quadtrees [14]. Since our interest

is in the eÆcient image/object representation, we com-

pare these two shapes (triangular and rectangular) and

conclude in [8] that triangular shape partitioning pro-

vides a better tradeo� between compression ratio and

distortion. An example of 2D partitioning is illustrated

in Fig. 1. An example of 3D partitioning of a sphere

is presented in Fig. 2.

The blending representation di�ers from polynomial

�tting. The resulting blending surface for a given re-

gion is based on control points (amplitudes, coordi-

nates), which are located at speci�c parameterized co-

ordinates. The polynomial �tting provides a surface

based on coeÆcients computed for each region in order

to minimize some average error. This coeÆcient deter-

mination can generate unstable surfaces for high poly-

nomial orders and it is region dependent. The blending

approach does not compute coeÆcients, instead it uses

amplitudes/coordinates from speci�c (parameterized)

locations inside the region in order to generate the sur-

face.

One important characteristic of the blending repre-

sentation is that control points located at each region

boundary can be shared by the neighboring regions.



Fig. 1. 2D Partitioning illustration and blend-
ing representation for the “lenna” image.

Fig. 2. 3D Partitioning illustration for a sphere.

This results in three desirable properties: 1) potentially

better compression by sharing the coeÆcients [7], 2)

reduced blockiness (distortion at the boundaries) since

the resulting neighboring surfaces are forced to have

closer amplitudes at the boundaries [10], 3) better and

stable adjusting of the surface by changing one or more

amplitudes of the control points.

In this work, we describe a general greedy approach

and its application to the quantization of control points

in a blending representation of images or 3D objects.

2. THE QUANTIZATION PROBLEM

Recalling that some control points are shared among

neighboring regions [10], by changing a control point

amplitude, we a�ect the surfaces of the regions that

share this control point. This dependence complicates

the quantization design. The same problem appears

in still image coding using blending surfaces [7] and in

the quantization of geometric coordinates for 3D ob-

jects described in VRML [3]. Traditional quantization

techniques, like the Loyd-Max quantization [13, 2, 11],

cannot be applied for this problem because the assump-

tion of independence of distortion (the overall distor-

tion as the sum of individual distortions) does not hold

for the blending representation.

The dependence problem is discussed in [4], where

optimality is found using the Lagrangian optimization

approach when the distortion and the bit rate contri-

bution of each coding unit can be computed indepen-

dently. When independence cannot be assumed, the

computational cost of the optimal solution becomes

exponentially high on the number of coding units. In

these cases, simplifying assumptions and heuristics are

necessary in order to achieve a practical solution. In

face of this dependence problem and associated com-

plexity, we propose in the following a sub-optimal

greedy approach for quantization of the control points.

3. BEING GREEDY

The greedy approach is used in many instances of

the Computer Science literature. Sometimes this ap-

proach is able to produce the optimal solution [6]. One

very famous example of optimal greedy approach is

the Hu�man coding [5]. However, many times a sub-

optimal solution is acceptable when the computational

cost of an optimal solution is extremely high. The idea

of being greedy is to look for a solution which pro-

vides the best local improvement at each step of the

algorithm. This approach may not produce the best

overall result for a given number of steps.



In most cases, a greedy approach implies in an iter-

ative algorithm. Our approach is to look for a greedy

way to quantize the control points at each iteration.

We modify only one control point per iteration. The

problem is to de�ne which control point to change

(quantize) in order to obtain a good tradeo� between

compression and distortion. In the following we for-

malize the problem at hand.

4. DISTORTION AND ENTROPY

4.1. Entropy of a m-th order Markov Source

Given a sequence of control points in the set X =

x1; � � � ; xn which de�nes the blending surfaces to rep-

resent the regions of an image or a 3D object. Without

lost of generality, let us assume that each control point

is represented by a �xed number of bits or equivalently,

by uniform quantization using Nq levels. Therefore,

this data source has at mostNq di�erent symbols. Con-

sidering that this data source is going to be entropy en-

coded by either Hu�man [5] or arithmetic coding [12],

the overall bit-rate can be estimated by the entropy of

this source [11]:

H(S) =
X
Sm

p(sj1; sj2; � � � ; sjm)H(Sjsj1; sj2; � � � ; sjm)

(1)

where p(sj1; sj2; � � � ; sjm) is the probability of the last

m symbols be the ordered set Sj = sj1; sj2; � � � ; sjm.

This also can be interpreted as the probability of am-th

Markov source be in the state Sj . S
m indicates that the

summation is applied to all possible states. The source

entropy for a given state Sj , H(Sjsj1; sj2; � � � ; sjm), is

given by:

�

NqX
i=1

p(sijsj1; sj2; � � � ; sjm) � log(p(sijsj1; sj2; � � � ; sjm))

(2)

In practice, the entropy coders can achieve a bit rate

very close (typically > 95%) to the expression 1.

4.2. Distortion Associated with Control Points

Each control point xi is represented by a symbol j or

equivalently, it is represented by one of the Nq quan-

tization levels j (also called bin j). Let us call this

association as xi;j . Let us de�ne D(i; j) as the distor-

tion of a control point i, associated with a quantization

level j. Since the control points are shared by some of

the neighboring regions s = 1; � � � ; NR, we compute

the distortion D(i; j) as the average of the distortions

DRs of these sharing regions. DRs is computed as the

sum of the squared distance between points inside the

quantized blending surface and points in the original

surface for the region s. By changing a control point

xi;j to another quantization level k, the new associ-

ated distortion becomes D(i; k) and it also a�ects the

associated distortions of the control points located in

regions that share the control point xi.

The formulation above is not restricted to the prob-

lem of blending surfaces, it can be applied to any case

where exists dependence among coding units.

5. THE GREEDY WAY

The greedy approach determines at each iteration

which control point should be moved to another quan-

tization level such that the entropy reduces and the

introduced distortion is the smallest among all other

possibilities. This approach needs a set of comparisons

for all possible distortions generated by changing the

quantization levels of the control points. This greedy

approach reduces the entropy and introduces the small-

est distortion possible at each iteration. The overall

distortion and bit-rate can be controlled by monitor-

ing the introduced variations of bit-rate and distortion

at each iteration.

This approach provides a �ner bit-rate/distortion

control as opposed to the uniform quantization ap-

proach. For a given data source, the uniform quan-

tization can provide some points in the resulting rate-

distortion (R-D) curve. The number of points depends

on the number of di�erent quantization levels used to

generate this experimental curve. However, only a few

quantization levels are practical: those which provide

acceptable tradeo� between distortion and bit-rate.

The proposed approach starts from one these points in

the R-D curve and produces other non-existent points

with lower entropy.

In the following we present two examples of applica-

tion of the proposed greedy quantization approach. For

simplicity, the following algorithms model the source

data by a 0-th Markov model.

6. THE 0-th MARKOV MODEL

For this simplest model Eq. 1 becomes:

H = �

X
l

�
fl

n
log

�
fl

n

��
(3)

Given the quantized control points sequence X =

x1; � � � ; xn, the algorithm searches for a new sequence

X 0 = x01; � � � ; x
0

n
presenting a lower bit-rate. Recalling

that each control point x0
i
is quantized to a bin j; every
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Fig. 3. Priority queues associated with a bin j

in a histogram of control points.

bin j, j > 1, j < Nq , has two neighboring bins: the left

bin j � 1 and the right bin j + 1, as illustrate by the

histogram in Fig. 3. The distortion associated with the

control point x0
i;j

is D(i; j). This distortion takes into

account those neighboring triangular surfaces sharing

the point xi;j . Moreover, two other costs are associated

with each control point x0
i;j
: the cost of moving it to

the left bin, D(i; j � 1) and the cost of moving it to

the right bin, D(i; j + 1). The greedy approach �nds

at each iteration the element x0
i;j

(associated with bin

j) and moves it to a neighboring bin k, such that:

A) the frequencies associated with the bins j and k

follow the inequality: fj � fk;

B) the element x0
i;j

when moved to a neighboring

bin, either k = j � 1, or k = j + 1, has the minimum

associated distortion D(i; k) among all other possible

movements of elements and respective distortions pre-

senting the property A.

In this algorithm, at each iteration, the entropy re-

duces and the distortion is increased by the least pos-

sible increment. This property is veri�ed by the simu-

lations and it is demonstrated in the following.

7. ENTROPY REDUCTION

Hypothesis: \The 0-th order entropy of a control

point bitstream reduces if an element xi;j associated

with bin j, with frequency fj , is moved to a bin k,

presenting frequency fk � fj". The entropy before

moving the element is:

H = �

X
l

�
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n
log

�
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n
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(4)

The variation of entropy after moving the element is:

4H = �
fk + 1
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(5)

To prove the original hypothesis we only need to show

that 4H < 0. This inequality is arranged as:

fk � log

�
fk + 1

fk

�
+ log (fk + 1) +

+fj � log

�
fj � 1

fj

�
� log(fj � 1) > 0 (6)

Note that frequencies are positive integers. It is easy

to see from the last expression that the worst case,

where this inequality could fail, is when fk = fj . If

the inequality is valid for this worst case, it will also

be valid for fk > fj . Therefore, we only need to show

the following suÆcient condition:

(f + 1)
f+1

� (f � 1)
f�1

�
1

f

�2f
> 1 (7)

This inequality is obtained from the previous equation

using f = fk = fj . The above inequality holds for

f � 1, therefore the initial hypothesis is valid. This

property was observed in the simulations: each iter-

ation resulted in an entropy reduction. Since we are

using entropy encoders, the entropy reduction at ev-

ery step improves the compression, as observed in the

simulations.

8. FAST SEARCH USING PRIORITY

QUEUES

At each iteration, we need to �nd the element which

has the two properties described before. It is necessary

to compare all distortions and to determine the element

presenting the minimum D(i; k) where property A is

valid. A straightforward implementation would require

n comparisons for each iteration. We propose a more

eÆcient algorithm by keeping the left costs and right

costs of each element in two priority queues (binary

heaps) [16] for each bin. Basically, a priority queue

needs two operations: insertion and deletion of an ele-

ment. The insertion algorithm used here is very similar



Algorithm Deletion(BinaryHeap A, Position p)

Rem A [0, � � �, heapsize-1] array holds the binary heap

Rem X is in A[p] and L is in A[heapsize-1]

! Exchange X  ! L;

! heapsize - -;

! if Parent(L) < L

!! if (X < L)

!!! Heapify(L);

!!! done;

! else

!! while Parent(L) > L

!!! Exchange Parent(L)  ! L;

Table 1. Deletion algorithm for priority
queues. See [16] for Heapify() routine.

to the one presented in [16]. However, our proposed

deletion algorithm can remove any element in a known

position p. This new deletion algorithm is described in

Table 1. Both operations have complexity ofO(log(n)),

where n is the number of elements in the queue. As-

suming a number of iterations proportional to n, we

can show that the overall complexity of our greedy al-

gorithm is O(n:log(n)) [7]. This complexity increases

considerably if priority queues, or similar scheme, are

not used: O(n2).

9. RESULTS FOR STILL IMAGE CODING

The greedy approach was applied to the simplest

form (without wavelet decomposition) of the still image

coding algorithm in proposed [10]. First, the coding

algorithm produces a control point bitstream uniform

quantized into Nq levels. The greedy algorithm is then

applied to this quantized bitstream. The resulting con-

trol point bitstream is entropy encoded by arithmetic

coding with a 2nd order context model. For results in

Table 2 we use Nq = 64. We illustrate in this table a

great improvement by using the greedy approach: we

reduce the bit rate considerably while marginally re-

ducing the overall distortion.

10. GREEDY QUANTIZATION FOR 3D

OBJECTS

We investigate the problem of quantizing coordi-

nates in a 3D space. We assume that 3D objects are

constructed by a mesh of M triangles and each tri-

angle is completely de�ned by 3 points A, B and C.

Each point is de�ned by its coordinates (xi; yi; zi). As

before, each point is shared by the neighboring trian-

gles. Therefore, the distortion due to quantization of a

Images Non-optimized [10] Optimized (greedy)

Lenna 0.52 bpp, 31.23 dB 0.42 bpp, 31.43 dB

Peppers 0.67 bpp, 30.14 dB 0.56 bpp, 30.26 dB

Balls 0.12 bpp, 32.05 dB 0.10 bpp, 32.35 dB

Hotely 0.69 bpp, 30.14 dB 0.56 bpp, 30.26 dB

Barbara 0.73 bpp, 23.76 dB 0.64 bpp, 23.86 dB

Table 2. Results and comparisons for greedy
algorithm, no wavelet decomposition.

given point is propagated to all neighboring triangular

surfaces.

We modi�ed the greedy algorithm to quantize the

set of coordinates which represent a 3D object. The

approach is to change the iterative process such that

we quantize the coordinates of a point in a sequential

fashion. We split the coordinates into 3 vectors, one

for the \x" component, one for the \y" component and

one for the \z" component. Each vector is indepen-

dently uniform quantized and the elements are prop-

erly inserted in the corresponding priority queues. The

iterative process works in one element each time; �rst

we �nd the element in the \x" vector which has the

two properties described at Section 6 and move it to

the proper bin and associated priority queues. Next,

we repeat the one element process to the \y" vector

and then to the \z" vector. The next iteration starts

by modifying an element in the \x" vector followed by

modifying the \y" and \z" vectors.

The process stops when a certain number of iter-

ations is achieved or a given bit-rate or distortion is

obtained. It is important to notice that the 3 vectors

are not independent since when a component (in the

\x" vector for instance) is quantized to another bin, the

introduced distortion a�ects the distortion associated

with other components (in the \y" and \z" vectors for

instance). This dependence is considered in the itera-

tive process by updating the distortions in the a�ected

priority queues.

In order to evaluate the described algorithm exten-

sion to the 3rd dimension, we use a sphere generated by

a mesh of triangles. Two models are considered: model

3 with 512 triangles and model 4 with 2048 triangles.

We generate the VRML representation for these models

and it resulted in two �les, one with 17463 bytes (model

3) and the other with 69411 bytes (model 4). The usual

compression scheme for VRML is the Lempel-Ziv algo-

rithm. The resulting compressed �les for the model 3

and 4, using the GNU gzip, have sizes of 4088 bytes

and 16358 bytes respectively.

We use the Euclidean distance as a measure of dis-
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tortion. The greedy quantized vectors are encoded by

arithmetic coding with a 2nd order context model. We

can achieve a compression ratio of about two over the

traditional VRML [3] compression using Lempel-Ziv

based coders (e.g. zip and gzip). For instance, for the

model 3 the algorithm produces a �le with 2152 bytes

and no visible distortion. For the model 4, the algo-

rithm generates a �le of 8179 bytes also with no visible

distortion. The quantization process takes only a cou-

ple of seconds in an AMD K6-3 450 MHz running on

Linux operating system.

The Figure 4 shows a comparison between the uni-

form quantized only version and the greedy optimiza-

tion algorithm. We can see that the greedy optimiza-

tion can provide a higher compression for the same

quality or a higher quality for the same compression.

Moreover, the gain over the version using only quanti-

zation is small when compared to the bigger improve-

ment achieved by the 2D case using our 2nd degree

blending functions [10].

11. CONCLUSIONS

We describe an O(n � log(n)) iterative algorithm

for quantization of blending surfaces. The greedy ap-

proach provides an excellent performance when com-

pared to uniform quantization. We illustrate this per-

formance by given two examples for image and 3D ob-

ject compression.
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