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ABSTRACT

This paper studies the advantages and disadvantages of Frac-
tal Image Compression (FIC) compared to Wavelet Trans-
form Compression (WTC). The main point here is the qual-
ity x compression relation. As this paper deals with medi-
cal images, the image quality is vital, therefore a quantita-
tive analysis was done using the PSNR (Peak Signal-Noise
Ratio) criteria, and a qualitative analysis was performed by
medical doctors, experts in this field. Our results indicate
that there is an advantage in FIC for high compression ra-
tios when we take the image quality into account. Consider-
ing the compression speed we have a significant difference,
which indicates that WTC is faster than FIC.

1. INTRODUCTION

Digital images require a large amount of data to be repre-
sented. To make image storage and transmission practical
and economical, image compression has became a major is-
sue. Image compression takes advantage on the one hand of
human eye limits, and on the other hand of the natural re-
dundancy of images. Based on the fact that human eye can
tolerate small errors in images, several compression meth-
ods have been developed during the last two decades.

In the last few years, several image compression meth-
ods using fractals and wavelets theory have been developed.
This methods promise better compression performances with
better image quality [7, 10].

The focus on this paper is the comparison of FIC to
WTC applied to computerized tomography (CT) images in
the sense of image quality. The importance of this is that
medical images can not lose the diagnosis properties.

The reason for use CT images is that they are high res-
olution gray levels images. We could use SPECT1 or PET2

images but those kind of images are poor in spatial resolu-
tion. Another point is that CT images are analyzed in grey
level, and SPECT images, for example, are analyzed with
pseudocolor techniques.
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In section 2 we introduce the concepts behind fractal
image compression, with a quick view to some partition
schemes. Section 3 describes the functioning of wavelet
transforms applied to image compression. Experimental re-
sults, implementation details, and some methods discussion
are given in section 4.

2. FRACTAL IMAGE COMPRESSION

Fractal techniques have been applied to several areas of dig-
ital image processing, such as image segmentation [15], im-
age analysis [16], and texture coding [12]. FIC was first
proposed by Barnsley: objects or images could be modeled
by deterministic fractal objects (attractors of sets of two di-
mensional affine transformations [3, 10]).

The method consist of finding a construction rule that
produces a fractal image which approximates the original
image. Redundancy reduction is achieved by describing the
original image through contracted parts of the same image
[7].

2.1. Fractals and Iterated Function Systems

The construction of an iterated function system that approx-
imates the original image is basis for FIC. An IFS is a union
of contractive transformations that maps to itself. For a
transformationW to be contractive, equation (1) must be
satisfied. This equation states that the distanced(P1; P2)
between any two points,P1 = (x1; y1) andP2 = (x2; y2),
is diminished by applying the transformationW . A metric
used to measure distance, standard Euclidean metric, in a
two dimensional space is given in (2).

d(W (P1);W (P2)) < d(P1; P2) (1)

d(P1; P2) =
p
(x2 � x1)2 + (y2 � y1)2 (2)

With fractal image compression, an image is encoded as
the fixed point of a contractive mapping. The image is par-
titioned into blocks of square shape, namedrange blocks
[23]. The goal for the encoding is to determine, for each
range block, the best matching block, nameddomain block.
The domain block should be larger in size than the range



block to which it maps in order to fulfill contractivity re-
quirements [7].

The range-domain set forms an IFS that has the decoded
image as the attractor. Besides, the attractor should exhibit
less complexity than the original image. Complexity should
here be understood as the amount of storage needed to de-
scribe the object or the transformations. To store the com-
pressed image, only the coefficients of each IFS must be
stored. Given an imageS, the algorithm must produce a
union of transformationsw1; w2; : : : ; wn that satisfies (3).

S =W (S) = w1(S) [ w2(S) [ : : : [ wn(S) (3)

Equation (3) shows how the construction of an attractor
can be achieved, i.e. by partitioningS into n pieces. Find-
ingW so thatS =W (S) exactly with less complexity than
the original image is not likely to be obtained [10]. Since,
fractal image compression is a lossy compression method,
the equalityS = W (S) does not have to be exactly ful-
filled. Instead,S can be approximated byW (S). Assuming
a distortion measured(S; S 0) between the imagesS andS 0

exists, the problem is to minimized(S;W (S)) and the com-
plexity ofW . This can also be stated as minimizing the loss
and maximizing the compression ratio. For all practical pur-
poses, the choice is more a trade-off between compression
ratio and distortion.

2.2. Image Partitioning Schemes

An obvious partition scheme ofS is to divide the image into
a number of non-overlapping quadratic square range blocks
as implemented in the first algorithms developed [7, 10]. An
image of size256� 256 is partitioned into squares of8� 8
pixels. As required by equation (3), the union of the set
range blocks covers the entire image. A corresponding set
of domain blocks is similarly constructed with the excep-
tions that the domain blocks are chosen to be twice the size
of the range blocks (to insure contractivity for the domain-
to-range block transformation) and the domain blocks are
allowed to overlap. Overlapping increases the size of the
domain block pool thus increase the probability of finding
a good range-domain match. The partition of an image of
size256� 256 into domain blocks of size16� 16 will re-
sult in a large number of domain blocks(58081). This large
search space is the reason for the high computational costs
associated with fractal image compression. To obtain the
best match, the entire domain pool must be searched, with
the best match chosen for each range block. In practice,
the first domain block matching the range block within an
acceptable distance measure is used.

This simple partition scheme, with a fixed block size,
has limitations. For large range blocks, good matchings
with domain blocks become unlikely. To overcome this lim-
itation, a quadtree partitioning scheme can be employed. A
quadtree decomposition initially partitions the image into
large range blocks, typically16� 16 pixels. Then, the best
possible transformation for each block is found. This best
transformation is compared with the original block using a
distance metric. An acceptable threshold is set before the

transformation. The transformation is accepted if the dis-
tance between the blocks is lower than the threshold. If the
transformation is discarded, the range block is divided into
four sub-blocks and the search for a best transformation for
each sub-block is initiated.

This partition scheme can be recursively continued for
several levels (typically2 � 4) until either all blocks are
covered with an acceptable transformation or until a cer-
tain minimum range block size is reached for which the best
matching transformation is used. The range block sizes for
the quadtree partitioning employed here are16, 8 � 8 and
4 � 4 pixels. The corresponding domain block sizes are
32� 32, 16� 16 and8� 8 pixels, respectively.

Other schemes, using not only different partition sizes
but also different partition geometries, have been imple-
mented [7]. These schemes typically attempt to decom-
pose the image in some content dependent manner. Differ-
ent partition geometries which have been employed include
horizontal-vertical (HV), triangular and polygonal decom-
positions.

3. WAVELET TRANSFORM

The first wavelet was found by Haar early in this century
[22]. But the construction of more general wavelets to form
bases for square-integrable functions was investigated in the
1980s, along with efficient algorithms to compute the ex-
pansion. At the same time, applications of these techniques
in signal processing have blossomed.

The Wavelet theory [20, 22] provides a powerful tool to
solve many signal processing problems. For example, mul-
tiresolution signal processing [13], computer vision [22],
subband coding [14, 20] (dealing with image and speech
compression), and Wavelet series expansion (applied math-
ematics). In fact, the Wavelet theory covers a wide area that
treats time continuous and discrete cases.

The principle behind the wavelet transform, as elabo-
rated in a number of recent papers [2, 13], is to hierarchi-
cally decompose an input signal into a series of successively
lower-resolution reference signals and their associated de-
tail signals. At each level, the reference signal and detail
signal contain the information needed to reconstruct the ref-
erence signal at the higher resolution level.

3.1. Continuous Wavelet Transform

The one dimension continuous wavelet transform (CWT) is
defined [18] by:

CWT (a; b) = hf;	a;bi

=
1p
jaj

Z +1
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dt (4)

whereh i represents a two functions inner product,a and
b are real numbers and	a;b(t) is a set of orthogonal func-
tions, the so calledwavelets.



3.2. Discrete Wavelet Transform

In accordance to [19], a discrete wavelet transform (DWT)
can be defined as:

DWT (m;n) = dm;n = hf;	m;ni (5)

where	m;n is a discretewavelets version given by:

	m;n =
1p
am0

	

�
t

am0
� nb0

�

=
1p
am0

	

�
t� nam0 b0

am0

�
(6)

wherea0, b0 are constants, andm, n are integers.

4. RESULTS AND CONCLUSIONS

A 512� 512 computerized tomography image was used to
evaluate FIC and WTC applied to CT images. This image is
shown in figure 1. To better evaluate the results obtained in
this work, we have performed a qualitative and a quantita-
tive analysis of the compressed images. For the quantitative
analysis the Peak Signal Noise-Ratio (PSNR3) was used to
compare the image quality. For the qualitative analysis we
created a set of images and submitted those images to the
analysis of four radiologist (see table 1 for details).

Figure 1: Original512� 512 CT image

Before present the results we would like to show the
implementation of both techniques involved in this paper.

4.1. Implementation Description

Here we describe the implementation of each technique used.
The wavelet program we used was developed by Simon-
celli [1], and its called EPIC4. The FIC program was com-

3

PSNR = 10 log10

�
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2

MSE

�

4Efficient Pyramid Image Coder

pletely based on the LIMBO software which was developed
by Frigaard [8], and adapted by the authors of this paper.

Basically, the EPIC is an image coder based on a bi-
orthogonal critically-sampled dyadic wavelet decomposition
and a combined run-length/Huffman entropy coder. EPIC is
available via anonymous ftp atftp.cis.upenn.edu in
the filepub/eero/epic.tar.Z.

The skeleton of LIMBO has not been changed. Its use a
Quadtree partitioning system. We modified the final struc-
ture of the program inserting an adaptive Huffman coder.
The original version of LIMBO can be downloaded from
ftp.vision.auc.dk in the directorypub/Limbo/.

4.2. Quantitative Analysis

In this section we present a qualitative analysis comparing
fractal image compression to wavelet transform compres-
sion.

The graphic in figure 2 represents the compression ratio
by the PSNR considering the softwares discussed in section
4.1, and a FIC version of LIMBO with a simple Huffman
coder.
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Figure 2: Fractal � Wavelet

From the graphic we can see that an adaptive Huffman
coder is more interesting than a simple Huffman for the FIC
method. Besides, the FIC method using an adaptive Huff-
man becomes even more interesting than the WTC method
when we compare the compression ration � image quality.
We were not worried on computational time.

4.3. Qualitative Analysis

In this section we present the qualitative analysis. Here we
had to create a set of images to show to the medical doctors
that were collaborating in this work.

The images were presented randomly to each doctor.
They were asked to separate the images by quality. This
way we were trying to get the filling of a radiology ex-
pert. Of course they had not received any information about
the images (they were not looking for some disease but just
comparing image quality by their experience).



Image PSNR[dB] Technique Dr. A Dr. B Dr. C Dr. D Sum
1 original original 5o 5o 7o 2o 19
2 34.9 Fractal 4o 7o 5o 4o 20
3 40.16 Fractal 6o 2o 2o 9o 19
4 29.06 Fractal 8o 10o 8o 10o 36
5 35.17 Fractal 3o 8o 4o 5o 20
6 40.13 Fractal 2o 3o 3o 8o 16
7 46.19 Wavelet 1o 1o 1o 1o 4
8 26.55 Wavelet 11o 11o 10o 11o 43
9 32.92 Wavelet 9o 6o 6o 3o 24

10 39.27 Wavelet 7o 4o 2o 6o 19
11 29.59 Wavelet 10o 9o 9o 7o 35

Table 1: Image classification in accordance to doctors’ opinion.

The results are shown in table 1. This table is organized
as follow: the first column represents the image number
(for classification), the second column represents the im-
age quality considering the PSNR value, the third column
shows the technique used to compress that image, from the
fourth to seventh columns we have each doctors’ opinion,
and in the eighth column we have the sum of the doctors’
classification for each image.

4.4. Conclusion

The objective of this paper was to compare fractal image
compression to wavelet transform compression, and its ap-
plication to CT images.

From the qualitative analysis and the quantitative analy-
sis we could verify some important points. First of all, let’s
consider the quantitative analysis, where the PSNR is the
main point. There we could see the advantage of using an
adaptative Huffman coder against the use of a normal Huff-
man coder. An interesting point is the wavelet curve behav-
ior (smooth). It’s because the low pass filter characteristics
of wavelet transform, which contributed to the better perfor-
mance of this specific method for low compression ratios.

Now, considering the qualitative analysis we have first
to point out the results represented in the eighth column of
table 1. Taking into account the evaluation of the doctors
we could see that the PSNR has a significant value when we
are comparing image compression techniques.

Following the results, some assumptions are made. For
low compression ratio, WTC seems to be much better than
FIC, even using an adaptive Huffman coder (AHC). For
high compression ratio, FIC performed a better result com-
pared to WTC, but just using an AHC. Another important
point is that from the complete set of images showed to the
doctors we could see that for a PSNR higher than 37dB they
found very difficulty to compare images (” they all seem to
be the same” said the doctors). Two example images can be
seen in figures 3 and 4.

Acknowledgments

We would like to thank Dra. Magda Nunes, Dr. Mauro
Tchasavoy Master, Dr. Matias Kronfeld and Dr. Cláudio
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