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In this paper we address adaptive maximum-likelihood sequence
estimation using per survivor processing (MLSE-PSP) over fast
frequency-selective fading (FFSF) channels. Special care is
dedicated to the choice of the search algorithm (SA) used in
these schemes and its influence on the receiver symbol error rate
(SER) performance, which is evaluated by Monte Carlo
simulation. Results of several experiments under conditions of
varying signal-to-noise ratio (SNR) and maximum Doppler shift
(fD) are reported. They show that the SA plays a fundamental part
in the improvement of the MLSE-PSP reception performance and
that the judicious choice of the SA is an effective approach to
obtain efficient schemes.
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Sequence estimation over fast frequency-selective fading�(FFSF)
channels has been a topic of increasing research interest mainly
because of its potential application to mobile communications. It
is well known that Maximum Likelihood Sequence Estimation
(MLSE) over dispersive and additive white Gaussian noise
(AWGN) channels is obtained by minimizing the Euclidean
distance between the received sequence and all the possible
transmitted ones [1,2]. For a known time-invariant channel
MLSE can be efficiently implemented by the Viterbi Algorithm
(VA) [3] whose complexity increases exponentially with the
channel impulse response (CIR) length. On the other hand, for
unknown time-variant channel the MLSE criterion (joint data
and Channel estimation) is only implemented by exhaustive
search [4] whose computational complexity increases
exponentially with the �����
�� length. For this situation various
adaptive MLSE schemes with limited complexity have been
proposed, among which those employing per survivor processing
(PSP) [5-8] have received special attention, in particular for
sequence estimation over fast time-varying channels [2].

A MLSE-PSP receiver uses a set of data-aided estimators of
channel parameters (a bank of adaptive filters (AF)) embedded
into the structure of a search algorithm (SA). The SA supplies the
bank of AF with extended surviving sequences to be used for
channel parameters estimation. On the other hand, the adaptive
filters send back the updated channel parameters which are used
for decision metric evaluation.

The superiority of MLSE-PSP receiver performance over FFSF
channels is due to two main reasons [5]. Firstly, there is no delay
in the survivors selection, which is a serious impairment in
conventional MLSE [1]. Secondly, the MLSE-PSP scheme
regards several sequences in the estimation of the unknown
channel parameters while the conventional MLSE scheme uses
only one sequence (the “best” one). Therefore a MLSE-PSP
receiver yields a more accurate approximation to the joint ML
estimation of the CIR and symbols.

In spite of having better performance characteristics than other
adaptive MLSE schemes, there are several open research topics
concerning MLSE-PSP schemes, such as the choice of the AF
algorithm and the SA [6]. Although any algorithm can be used to
select the sequences to be retained by the receiver (survivors), the
Viterbi algorithm (VA) has been adopted frequently [3]. In this
case, the receiver uses QL adaptive filters, where L is the channel
memory length  expressed in symbol intervals and Q is the size
of the modulation symbol alphabet.

 In this work we focus on the selection of the SA for MLSE-PSP
schemes employing the LMS algorithm for channel estimation
[9]. Computer simulations have been conducted in order to
evaluate the SER performance of these schemes considering
several values for the number of survivors retained in the search,
under different fading conditions.

The remainder of this paper is organized as follows. The system
model and our approach to the selection of the search algorithm
are described in Section 2. In Section 3 we present the simulation
results and our conclusions are summarized in Section 4.
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We assume the baseband-equivalent transmission system model
shown in Fig. 1, where {In} is the transmitted information
sequence, η(t) is a sample function of a zero-mean complex
��������� ������ 
������
� process, z(t) is the received signal
complex envelope, {rn} is a sequence of signal samples at the

baud rate, T is the symbol interval, and { nÎ } is an estimate of

{In}.� The channel is modeled as Gaussian WSS-US (“Wide
Sense Stationary - Uncorrelated Scattering”) with equally spaced
discrete power delay profile. The channel output is given by
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complex Gaussian processes, and L is the channel memory
length. The power spectrum of each channel ray is  given by
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where 2
L

σ  is its mean power and
'
�  is the maximum Doppler

shift [10].

����� �� � Baseband Equivalent Transmission System
Model.

The receiver is composed of a receiving filter, a sampler, a search
algorithm and a bank of adaptive filters. As no complexity
limited search algorithm is able to implement the MLSE criterion
over unknown channels [4], a class of good search algorithms to
be used in MLSE-PSP receivers is required. In a companion
work [11] this theme was exploited considering MLSE-PSP
schemes using Kalman filters and second-order autoregresive
(AR-2) channel variation modeling. The simulation results in
[11] showed that the M-algorithm provides excellent
performance, with no floor at the SER curves even when the
number of survivors is reduced to 4. We also verified that this
scheme exhibits exceptional capacity to track the channel
impulse response (CIR) variations.

It is worthy to note that the performance improvements obtained
in [11] were partially due to the use of Kalman filtering and AR-
2 channel modeling. This topic was further discussed in [12]
where an investigation of AF algorithms for MLSE-PSP
receivers was addressed.

In this work we intend to accomplish a more exhaustive
investigation of the isolated contribution of the SA to the
receiver performance improvement. With this aim we fixed the

LMS algorithm as the MLSE-PSP filtering strategy, because it is
the earliest, the simplest and still the most widely utilized
adaptive filtering algorithm. With respect to the SA we propose
the use of the Generalized Viterbi Algorithm (GVA) [13]. While
the Viterbi algorithm works by taking the survivors from QL lists
of Q candidates (one survivor per list is chosen), the GVA selects
the S (1≤S) “best” survivors in each one of NL lists of candidates
having the same K (K ≤ L) last symbols (NL=QK).

The GVA corresponds in fact to a large class of search
algorithms which are defined by the choice of parameters NL and
S. It comprises, for instance, the M-algorithm (NL=1,S=M) and
the VA (NL=QL,S=1). We denote a GVA with parameters NL and
S by GVA(NL,S). In the particular cases of GVA(QL,1) and
GVA(1,S) we will use the notations VA and M(S), respectively.
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We have considered a QPSK modulator (Q=4) at rate 24.3
Kbaud. The transmitter and receiver filters are matched filters
with square root raised cosine �������������
���(IR). We assume
perfect receiver clock synchronization, so the inter-symbol
interference (ISI) is supposed to result from multipath fading
only [1].

The time-varying CIR was imposed to be composed of 4 taps
(L=3), T seconds apart, with variances 0.45, 0.3, 0.15 and 0.1.
Each tap has been simulated using the Monte Carlo technique
presented in [14]. Two values of the maximum Doppler shift (fD)
were considered: 50 and 100 Hz, which correspond to speeds of
60 and 120Km/h, respectively, for a 900 MHz carrier.

The SER performance evaluation was been carried out by Monte
Carlo simulation and averaging over 3000 independent runs,
each one involving the transmission of 500 symbols (an amount
of 1500000 symbols). The noise variance was adjusted in
accordance with the SNR at the receiver filter input, expressed by
the ratio between the �
�� �� ���� !��� (Eb) and the noise �����
"����������
�����(N0) [1]. The Eb/N0 ratio was varied from 0 to
30 dB, with 2 dB increment.

As we were only interested in channel tracking, we ignored
channel acquisition and assumed perfect training, so the channel
estimates were correctly initialized at the beginning of the
reception, for each block. With respect to the LMS step-size
parameter, we verified by simulation that the value 0.25 yields
good tracking characteristics for the range of maximum Doppler
shift and SNR considered in this work. This value was used in all
the simulations reported in the following. In addition, we have
assumed decisions delayed by (5L-1)T. It is well known that for
the Viterbi algorithm the decision delay at (5L-1)T is enough to
assure a high probability of trellis path merging [3].

Fig. 2 illustrates the SER performance of two SA that retain 4
survivors, namely the M(4)-algorithm and the GVA(1,4), for two
values of the maximum Doppler shift (50 Hz and 100 Hz). It is
seen that the M(4) algorithm performs better than the GVA(4,1),
for both values of the maximum Doppler shift. For instance, at
Eb/N0=25dB and fD=50Hz the GVA(1,4) produces SER=10-1

whereas the M(4) algorithm achieves SER=10-2. Fig. 2 also
shows the performance degradation produced by the increase in
fD from 50 to 100 Hz, for both  search algorithms.
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To further investigate the effect of the SA algorithm on the
receiver performance, Figs. 3 and 4 show the SERxEb/N0 curves
for algorithms that retain 16 and 64, respectively, under
transmission conditions similar to those assumed in Fig. 2.

Fig. 3 illustrates the SER performance of the GVA(4,4), the
GVA(16,1) and the M(16) algorithm while Fig. 4 depicts the
performance produced by the algorithms GVA(16,4), VA, and
M(64). Figs. 3 and 4 show clearly that the M-algorithm produces
remarkable performance improvement over the other search
procedures.

����� �� � SER x SNR for an MLSE-PSP scheme
employing SA with 4 survivors.

Comparing the performance results  presented in the Figs. 2, 3
and 4 we verify the improvement in the SER performance
produced by increasing the amount of survivors. However we
may observe in Fig. 4(b) that the VA and the GVA(16,4), in spite
of retaining 64 survivors in the search, are unable to eliminate the
“irreducible SER” effect when fD is increased to 100Hz.

It is worthy to point out that, unlike the other SA evaluated in
this work, the M(64)-algorithm did not produce floor at the SER
curves when fD=100Hz.

In order to shed more light on the error generation mechanisms
in the MLSE-PSP receivers under study the histogram in Fig. 5
shows the amount of  observed errors (in 500 independent trials)
in 25 successive intervals (bins) of duration 20Ts, from the
beginning to the end of each block, for the M(16) algorithm at
Eb/N0=21dB and fD=50 Hz. It may be observed in Fig. 5 the
increase in the amount of errors as along with the bins.

This effect of error concentration at the end of information block
was verified to be caused by CIR tracking loss. This is
illustrated in Fig. 6, which shows that MSE (Mean Square
Error) in the CIR estimation increases along with the number of
received symbols. These characteristics of error concentration
and tracking loss were also verified in all other simulation
experiments we conducted in this work.

(a) fD = 50 Hz

(b) fD = 100 Hz
����� �� � SER x SNR for an MLSE-PSP scheme
employing SA with 16 survivors: (a) fD = 50 Hz and
(b) fD = 100 Hz.

In light of these results, we can say that the receiver performance
is limited by the LMS tracking errors when the information block
length is increased. A very different behavior was observed in
[11] where we considered MLSE-PSP schemes using the M
algorithm and Kalman filtering with AR-2 channel modeling�

After the end of this work the authors have been aware of another
paper on the same subject, which come to similar conclusions
[15] in respect to the search algorithms for MLSE/PSP receivers.
Besides several differences on the assumed transmission
environment the present work addresses an in-depth discussion
of the error generation mechanism within MLSE-PSP receivers,
which is not explicitly considered in [15].

o GVA(4,4)
+ GVA(16,1)
* M(16)
x theoretical MLSE

o GVA(4,1), fD=50
* M(4), fD = 50
+ M(4), fD =100
x GVA(4,1), fD=100

o GVA(4,4)
+ GVA(16,1)
* M(16)
x theoretical MLSE



(a) fD = 50 Hz

(b) fD = 100 Hz.

����� �� � SER x SNR for an MLSE-PSP scheme
employing SA with 64 survivors. (a) fD = 50 Hz and
(b)  fD = 100 Hz.
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MLSE-PSP receivers over fast frequency-selective fading
channels were investigated in this work. In particular, we focused
on schemes using the LMS algorithm for channel estimation,
whose performances were evaluated by Monte Carlo simulation.
Special attention was dedicated to the choice of the search
algorithm.

Our simulation results showed that the M-algorithm is an
excellent search procedure for MLSE-PSP receivers and that this
algorithm by itself produces significant performance
improvement.

We also verified that in spite of playing a fundamental part in the
receiver performance, the improvement provided by the M-

algorithm is limited by channel tracking errors due to the LMS
algorithm, especially when the length of the received information
block is increased. In a previously published work [11] we
verified that this limitation may be circumvented by using
Kalman filtering with AR-2 channel modeling.

From the foregoing performance discussion and  that presented
in [11] it is apparent that in order to obtain the best performance
characteristics of MLSE-PSP over FFSF WSS-US channels it
would be necessary the simultaneous use of the M-algorithm and
AR-2 Kalman filtering. The only impairment of the schemes so
obtained is the increase in computational complexity due to
Kalman filtering. In the continuation of this work we intend to
investigate the use of AR-2 channel modeling and less
computational demanding filtering strategies in order to reduce
the complexity of these schemes without sacrificing their
performance characteristics. We also intend to evaluate the
robustness of these schemes to mismatch in channel modeling.

�������� Histogram for M(16), fD=50 Hz  and Eb/N0 = 21
dB.

����� �� MSE for M(16), fD = 50 Hz and Eb/N0 = 21dB�
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