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ABSTRACT

In this paper we investigate the conditions of applicability of a non-
linear predictor based on neural networks to perform blind equal-
ization using only one input instead of several ones as usual in lin-
ear strategies. Linear and nonlinear prediction concepts are revis-
ited in order to clarify some believes. A new self-organized learn-
ing algorithm is proposed in order to improve the performance of
the nonlinear equalizer. Computational simulations illustrate and
compare the performance of the proposed approach with classical
structures for equalization.

1. INTRODUCTION

Blind equalization in digital communication systems stands for the
estimation of a transmitted symbol with no training sequence in
acquisition period, using statistics of the transmitted data. Sev-
eral techniques have appeared in the last two decades to perform
blind equalization, namely, Constant Modulus Algorithm (CMA),
Benveniste-Goursat and Shalvi-Weinstein [1, 2, 3] among others.

Most part of those strategies use linear filters with finite impulse
response (FIR) and insert nonlinearity in the applied cost function.
Although their efficiency, it is well known that the use of a FIR
equalizer may provoke an excessive increasing of noise power as
well its unability to equalize spectral nulls channels [4].

Aiming to cope with that restriction, several works have proposed
the use of nonlinear filter structures, specially neural networks, to
blind equalization [5, 6, 7, 8]. The choice of neural networks lay
on their characteristics of embedded nonlinearity and also in the
saturation characteristics that could provide some improvement to
the problem of increasing noise power.

Considering the transmitted symbols to be uncorrelated, equaliza-
tion can be done by means of prediction [9]. In second-order statis-
tics context, the use of linear prediction is limited to the case of
minimum and maximum phase channels [1, 9].

Some works [10, 11, 12] using the concept of prediction have pro-
posed combined structures in order to perform equalization of non-
minimum phase channels (NMPC). Those approaches use the well
known fact that a NMPC can be separated in its minimum and
maximum parts and use linear filters and decision feedback to re-
cover the symbols.

In a classification approach, the equalization problem based on lin-
ear prediction is limited due to the linear mapping provided by the

filter. Nonetheless, it is quite easy to show that, in most cases,
the ideal mapping is nonlinear (see example in Section 2). In this
work we propose to investigate the use of a neural network-based
predictor to blind equalization. In a previous work [13] we have
used the backpropagation learning algorithm to equalize channels
with low intersymbol interference.

In order to avoid local minima on the used cost function a new self-
organized algorithm is proposed to update the network parameters.
This new strategy permits to divide in to two steps the learning pro-
cess. The first one self-organized and then a classical supervised
algorithm based on prediction error.

In Section 2 we explore the linear and nonlinear concepts. Sec-
tion 3 is devoted to the new self-organized algorithm. Section 4
presents computational simulations comparing the new strategy
with classical ones and, in the last section conclusions are pre-
sented.

2. PREDICTION CONCEPTS

In digital communication systems, the implicit goal of apply-
ing prediction is to remove redundancies in the received signal,
which can be used in blind equalization. The representation of a
prediction-based equalizer is shown in Fig. 1, wherex(n) is the
noisy channel output sequence,b(n) is the noise,̂x(n) is the pre-
dicted signal,e(n) is the prediction error,P is a prediction filter
andg is an Automatic Gain Control (AGC).
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Figure 1: Prediction-Based Equalizer.

The channel is modeled as a linear filter with finite impulse re-
sponse (FIR) and its transfer function given by

F (z) =
N�1X
i=0

fiz
�i (1)

where fi are the channel coefficients and N is the channel length.
We can also represent the channel model in a vectorial form:



f = [ f0 f1 f2 � � � fN�1 ]T . Then, the system model will be:
a(n) = [ a(n) a(n� 1) � � � a(n�N + 1) ]T (transmitted
sequence), x(n) = [ x(n) x(n�1) � � � x(n�N�M+1) ]T

and b(n) = [ b(n) b(n�1) � � � b(n�N�M+1) ]T where
M is the order of the equalizer.

Therefore, the noiseless channel outputs, which we call channel
states, can be written as:

�x(n) = a(n)f0 + � � �+ a(n�N + 1)fN�1

�x(n� 1) = a(n� 1)f0 + � � �+ a(n�N + 2)fN�1

�x(n� 2) = a(n� 2)f0 + � � �+ a(n�N + 3)fN�1

...
...

...
...

(2)

And then, the prediction error corresponds to:

e(n) = x(n)� P (x(n� 1)) (3)

where x(n�1) = [ x(n�1) x(n�2) � � � ]T , x(n) = �x(n)+b(n)
and P is a function which provides a prediction of x(n).

The simplest structure is obtained by choosing P to be linear.
In this case, considering power criterion on the prediction error,
equalization based on linear prediction is performed only to mini-
mum or maximum phase channels [1, 9]. On the other hand, some
works (for instance [9] and references therein) have proposed a
nonlinear filter structure to treat nonminimum phase channels.

To remove redundancies, the prediction error equation is rewritten
in the form:

e(n) = a(n)f0 + a(n� 1)f1 + � � �+ b(n)

�P (�x(n� 1) + b(n� 1) + �x(n� 2) + b(n� 2) + � � � )
(4)

Using a linear filter with discrete finite impulse response p =
[ p1 p2 p3 � � � pk], as a predictor device, we have:

e(n) = a(n)f0 + a(n� 1)f1 + � � �+ b(n)| {z }
x(n)

� [x(n� 1)p1 + x(n� 2)p2 + � � �+ x(n� k)pk]| {z }
x̂(n)

(5)

where pi is the i-th prediction filter coefficient.

Expanding x̂(n) leads to:

x̂(n) = (a(n� 1)f0 + a(n� 2)f1 + � � �+ b(n� 1)) p1

+(a(n� 2)f0 + a(n� 3)f1 + � � �+ b(n� 2)) p2 + � � �

+(a(n� k)f0 + a(n� k + 1)f1 + � � �+ b(n� k)) pk

(6)

Combining Equations (5) and (6) leads to:

e(n) = a(n)f0 + b(n) + a(n� 1) [f1 � f0p1]

�b(n� 1)p1 + a(n� 2) [f2 � f1p1 � f0p2]� b(n� 2)p2

+ � � � � a(n�N + 1)fN�1 [pk]� b(n�N + 1)pk
(7)

The goal here is to recover a(n)f0. For this purpose, we must
remove the undesired symbols by adapting the prediction filter in
order to force them to zero. Unfortunately, not all coefficients can
be canceled at once.

It becomes evident that, there is a residue in the prediction error
expression and this residue cannot be cancelled by a finite linear
filter. For equalization to be achieved, the samples of the predic-
tion error sequence must to be uncorrelated and this residue must
also be negligeable with respect to a(n)f0. A possible solution to
this problem is to increase the predictor order which decreases the
contribution of the residue. The scale factor multiplying a(n) is
recovered by the AGC that matches the power of e(n) and a(n).

However it is known that in the nonminimum phase channel case,
it does not work and in any case the noise itself cannot be removed
[9].

Since the linear mapping of a linear predictor may be not enough
for equalization, we have tried to find a structure able to perform
a nonlinear mapping in a satisfactory way. We chose the function
implemented by an ANN that has the following form:

 (x; �i; �i) =
X
i

�i � sign (x� �i) (8)

where sign(�) is the signum function.

In the nonlinear case, Equation (3) is rewritten by replacing func-
tion P by a nonlinear function  NN where the subscript stands for
a neural network.

e(n) = x(n)�  NN (x(n� 1)) (9)

According to Equation (8),  NN is a sum of weighted and shifted
copies of sign(�), whose parameters �i and �i would be found by
means of an a priori knowledge of the channel coefficients. How-
ever, since we do not have such an a priori knowledge, all pa-
rameters of  NN are stochastically adjusted by means of the new
algorithm described in Section 3.

Expanding Equation (9), it follows that:

e(n) = a(n)f0 + a(n� 1)f1 + � � � + b(n)

� NN (x(n� 1) ; x(n� 2) ; � � � )
(10)

It is possible to find a function  NN such that we can exactly can-
cel the term: a(n� 1)f1 + � � �+ a(n�N + 1)fN�1. Moreover
this function can only explicitly depend on x(n � 1) since it has
all information about past symbols that we need to remove redun-
dancies. So, rewriting Equation (10) it follows that:

e(n) = a(n)f0 + a(n� 1)f1 + � � �+ b(n)�

FNN (a(n� 1)f0 + a(n� 2)f1 + � � �+ b(n� 1))| {z }
a(n�1)f1+a(n�2)f2+���+a(n�N+1)fN�1

(11)

In this case we can obtain no residue. It is worth noting that the
noise b(n) is assumed to be an white Gaussian random variable
and, consequently, it is not predictable, therefore the best the ANN
can do is to cancel redundancies in the time sequence e(n).

Fig. 2 shows, a two-dimensional illustration of a nonlinear map-
ping done by the ANN.
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Figure 2: Nonlinear Mapping Function.

Clearly, the parameters �i, in Equation (8), have a crucial role on
the construction of  NN . So, the problem of finding good param-
eters for the ANN is addressed in Section 3.

3. NEW SELF-ORGANIZED LEARNING
ALGORITHM

In classical techniques, such as backpropagation [14], the updat-
ing of parameters �i and of the synaptic weights is usually done
through the same procedure. However, in this equalization prob-
lem such a procedure may not be able to quickly realize the fast
transitions shown in Fig. 2.

In order to solve this problem in a satisfactory way, we propose a
new self-organized learning algorithm that is based on the mini-
mization of a cost function in order to correctly find the �i of the
neurons and to simplify the task of finding the interpolation sur-
face.

It is easy to show that the probability density function (PDF) of
the received signal is a mixture of Gaussians. Furthermore, the
variance of each Gaussian is the noise variance and their means
are channel-characteristic-related.

It can be seen from Fig. 2 that the function referred to in Equation
(8) can achieve correct interpolation if parameters �i, associated to
the step transitions, are well placed between the ‘valleys’ . Then,
we minimize a cost function that permits us to find those parame-
ters by looking for a function that can fit in those ‘valleys’ . Since
the valleys have the shape of a “V” , perhaps the simplest function,
similar to a “V” we can use is N (x; �i) = jx � �ij + � where
� > 0 (see Fig. 3). We use this function in order to simplify the
resulting algorithm.

The constant � is inserted to avoid instability problems when
jx � �ij is very small and to guarantee a strictly positive function
N(x; �i).

In order to measure function similarities, we have chosen the
Kullback-Leibler Divergence (KLD), which is indeed a distance
measure in the Riemann space [14] given by:

p(x)

xκθ
i

Figure 3: Looking for the ‘valleys’ .

Dh(x)jjg(x) =

1Z
�1

h(x) ln

�
h(x)

g(x)

�
dx (12)

where h(x) and g(x) are two strictly positive functions. Since the
PDF of x(n � 1) and N (x; �i) are strictly positives, we apply
KLD in order to measure similarities between them.

Eliminating the term which does not depend on �i we obtain a cost
function given by:

J (�i) =

1Z
�1

p(x): ln

�
1

N(x; �i)

�
dx

J(�i) = �Efln(N(x; �i))g

(13)

In order to find the minima of this cost function we have to set
@J(�i)

@�i
= 0, where

@J (�i)

@�i
= �E

�
sign(x� �i)

jx� �ij+ �

�
(14)

The minimum value of �i can thus be obtained by using a simple
stochastic version of the gradient algorithm:

�i(n+ 1) = �i(n)� �
sign(x(n� 1)� �i)

jx(n� 1)� �ij+ �
(15)

which is a local adaptation rule of the Anti-Hebbian kind [14].

Finally, this adaptation rule is applied on the first layer while the
second one is updated by a stochastic LMS algorithm.

4. SIMULATION RESULTS

In order to investigate performance of the proposed structure com-
putational simulations of minimum and nonminimum phase chan-
nel have been used. In both cases results have been compared with
linear predictor and CMA. Performance results were also com-
pared with the limits of Wiener solution [1].

Using BPSK modulation and a Signal-to-Noise (SNR) defined

as SNR= 10 log10

�
�2
a

PN�1

i=0
f2
i
+�2

b

�2
b

�
where �2a and �2b are the

symbol and noise variance respectively. Decison Squared Er-
ror (DSE) ("(n) = y � Dec(y))2 is averaged by means of 100
Monte-Carlo trials.



4.1 Minimum Phase Channel

The selected channel has the following transfer function:

F (z) = 1 + 0:8z�1 + 0:4z�2

For the linear predictor we have used a transversal filter with 25
coefficients and the step factor equals 10�3. The initialization is
done by setting the vector of filter coefficients at zero except that
at the middle, set at 1.

The CMA has a filter with 30 coefficients and the step size equals
10�3 . The initialization was done in the same way that of linear
predictor.

The nonlinear predictor has one input, 15 neurons in the hid-
den layer and one output. For this structure we used the follow-
ing parameters: supervised learning rate equals 10�3, � equals
5:10�4 . The number of symbols for finding the �i was set to 50
and � = 10�7. The algorithm for the AGC [9] has a step size
equal to 10�3 and the weights in the output layer were initialized
at zero. The �i were randomly initialized from an uniformly dis-
tributed interval: [-1.5,1.5].

Fig. 4 shows the evaluation of DSE for those strategies in a SNR
= 40 dB environment.
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Figure 4: Decision Squared Error (SNR = 40 dB) - Mini-
mum Phase Channel. (1)Linear Predictor (2)Nonlinear Predictor
(3)CMA.

Although the nonlinear predictor outperforms the linear one, we
can easily see that the CMA outperforms both of them.

4.2 Nonminimum Phase Channel

The considered channel has the following transfer funtion:

F (z) = 0:6 + z
�1

� 0:7z�2

For the linear predictor we have used a transversal filter with 25
coefficients and the step factor equals 10�3. The initialization is
done by setting the vector of filter coefficients at zero except that
at the middle, set at 1.

The CMA has a filter with 30 coefficients and the step size equals
10�3. The initialization was done in the same way that of linear
predictor.

The nonlinear predictor has one input, 20 neurons in the hidden
layer and one output. The parameters are: supervised learning rate
equal to 10�3 and � equals 10�4. The number of symbols for
finding the �i was 500. The step size of the AGC equals 5:10�2

and weights in the output layer were initialized at zero whereas the
�i from an uniform distribution [-2,2].

Fig. 5 shows the evaluation of DSE of those startegis in a SNR =
40 dB environment.
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Figure 5: Decision Squared Error (SNR = 40 dB) - Nonmini-
mum Phase Channel. (1)Linear Predictor (2)Nonlinear Predictor
(3)CMA.

As expected, the linear predictor has failed in equalizing the
NMPC. The nonlinear predictor has obtained better results but is
outperformed by CMA.

5. CONCLUSIONS

The strategy presented in this paper proposes a nonlinear predic-
tion device based on Artificial Neural Networks with only one
input. Thanks to this strategy, the use of prediction is extended
to some cases of nonminimum phase channels. Furthermore, the
nonlinear predictor outperforms the linear one even in the cases
where it realizes channel equalization.

The use of one single input in the nonlinear predictor to achieve
equalization instead of several ones common in linear strategies, is
presented as a plausible alternative.

The division of the learning task in to two steps: a self-organized
for the hidden layer and a supervised for the output layer was pro-
posed to accelerate the ANN abilities, as well as to avoid the local
minimum found when a single MSE cost function is applied.

However, this strategy is limited to situations where the ‘valleys’
between Gaussians of the PDF of x(n�1) are deep enough, where
this deepness depends on the noise power and channel characteris-
tics. In cases where this condition does not hold, we must consider



an adaptation of the previous algorithms, particularly acting on the
parameter �. This improvement is actually under development.

On the other hand, its performance when compared with the CMA
seems to be inferior in most cases. See for example Fig. 5, where
the ANN predictive approach has higher complexity, slower con-
vergence and worse performance.

Then, it seems to indicate that the use of neural network-based
prediction is limited for some particular cases. Indeed, nonlinear
channels seem to be an interesting target for neural network-based
approaches.
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Annales des Télécomm. 53, No 1-2, pp. 39-58,1998.

[10] Rocha C.A and O. Macchi, “A Novel Self-Learning Adap-
tive Recursive Equalizer with Unique Optimum for QAM”, In
Proceedings ICASSP-94, pp. III.481-III.484, April, 1994.

[11] Cavalcanti F.R.P. and J.C.M.Mota, “A Predictive Constant
Modulus Algorithm for Blind Equalization in QAM Systems” ,
In Proceedings ICC’97, 1997.

[12] Labat J., O. Macchi and Christophe Laot, “Adaptive Decision
Feedback Equalization: Can You Skip the Training Period?” ,
IEEE Trans. on Comm., Vol. 46, No. 7, pp. 921-930, July,
1998.

[13] Cavalcante C.C., J.C.M. Mota, B. Dorizzi and J.R. Mon-
talvão, “Preliminary Results in Blind Equalization with Neural
Network-Based Prediction” , In Proc. XVII Brasilian Telecom-
munication Symposium, pp.508-513, Vila Velha, Brazil, 1999.

[14] Haykin, S., Neural Networks: A Comprehensive Foundation.
2nd edition. Prentice Hall International, 1998.


