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A SIMPLE PDF FITTING APPROACH FOR BLIND EQUALIZATION
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ABSTRACT

A new blind equalization algorithm for digital communication sys-
tems is presented. This algorithm is based on the adjusting of a
linear equalizer in such a way that the probability density func-
tion (PDF) of its output matches a parametric target function. A
link between the proposed cost function and that used by the Con-
stant Modulus Algorithm is also pointed out. Some simulation re-
sults are presented and compared to that provided by the Godard’s
equalizer.

1. INTRODUCTION

This work deals with blind equalization of linear channels in dig-
ital communication systems. A new blind equalizer is presented,
based on the adaptation of the equalizer taps until that of the out-
put equalizer PDF matches a target multimodal function. In this
moment we can guarantee that equalization is performed [1]. In
Section 2, the system model is presented along with the new al-
gorithm. A link between this new algorithm and the CMA is pre-
sented in Section 3. Simulations and conclusions are presented in
the last two sections.

2. A NEW BLIND ALGORITHM

Fig. 1 shows the single-input-single-output system model we are
concerned with. The equalizer input is obtained after demodula-
tion and sampling of the received signal.
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Figure 1: Baseband System Model.

The stream a(n) carries the information and each element in this
stream is modeled as a random variable which takes values from
an S-sized symbolic alphabet. We further assume that this alpha-
bet is complex-valued and symmetric w. r. t. the origin. The
noise sequence b(n) is i.i.d., zero-mean Gaussian and statistically
independent of a(n). Then, and assuming that the channel trans-
fer function, F (z), has no spectral nulls, a possible equalization
strategy is to make the global response G(z) = F (z) � H(z) as

close as possible to the ideal one: G(z) = z
�d, where d is a suit-

able decision delay. This is, in fact, the so-called zero forcing (ZF)
equalization [2].

Assuming that perfect ZF is obtained, it is easy to show that the
PDF of y(n) is:
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b is the noise variance. In fact, we

assume M � 1 to perform equalization.

Then, in order to match this desired PDF of a perfectly equal-
ized system, we construct a parametric target function given by
f(y;h; �̂2b ) = pY;ideal(y;h; �̂

2
b ), and we compare it to the actual

PDF, pY (y), by means of the following measurement of the extend
to which the model density and the true density agree [3, p. 59]:
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where the minimum of J , obtained when the two functions are
equal, is the entropy of Y .

Clearly, the estimated noise variance �̂2b depends on the equalizer
coefficients. However, in order to be simple, we can replace it by a
constant parameter � which, in fact, can play a crucial role on the
final algorithm (see Section 3). Then, expanding Equation (2) and
eliminating the constant terms, our effective cost function becomes
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Now, taking the stochastic gradient of Equation (3) w.r.t. the equal-
izer parameters, our blind equalization algorithm can be summa-
rized as follows:
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3. A LINK TO THE CM CRITERION

After the milestone paper of Sato [4], in 1975, blind equalization
to compensate for intersymbol interference (ISI) in digital com-
munication has been intensively studied. Among the most known



blind equalization criteria, those based on Constant Modulus are
probably the most popular. For instance, we can point out the so-
called Godard equalizer [5]. Moreover, since a great number of
publications on CMA performance limits and convergence issues
is available, it is useful to find similarities between new approaches
and CMA. Indeed, some relevant works like [6],[7] and [8] point
out links between other approaches and the CM criterion.

Likewise, a first step toward the performance characterization of
our proposal has been to find a link between our approach and
CMA. This link is clearer when a BPSK (�1) modulation scheme
is applied. Then, a parametric target function can be defined as
follows:
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where p is a strictly positive integer parameter.

It is straightforward to show that, applying it in Equation (2), the
resulting cost function, apart from some constants, is indeed the
well-known constant modulus criterion:
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As a result, from this point of view we can regard the CM criterion
as being a measure of divergence between the actual equalizer out-
put PDF and the target function fCM (�). Moreover, we can show
that our proposed target function f(y;h;�) can be set close to ei-
ther fCM (y;h; 1) (i.e., the Sato’s criterion) or fCM (y;h; 2) (i.e.,
the Godard’s criterion), by choosing a suitable value for �.

Fig. 2 shows some such target functions. Similarities between the
target functions, along with some simulation results, have shown
that an appropriate choice of � can afford performance character-
istics close to those of either the Godard or Sato equalizer, when
the modulation scheme is the BPSK.
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Figure 2: Comparison between Target Functions with some �
values.

Moreover, for more complex modulation schemes, the new fam-
ily of target functions can better fits the idealized equalizer output
PDF with S Gaussian kernels. Thus, since Equation (1) can take
into account even complex symbol parts and multilevel alphabets,
we can predict an improved performance w.r.t. the CMA.

4. SIMULATION RESULTS

All simulations presented in this section were done in order to ver-
ify the relationship between our proposal and CMA for p = 2 (i.e.,
the Godard’s equalizer). Moreover, only two modulation schemes
were considered, namely, BPSK and 4-QAM.

The signal-to-noise ratio is defined as SNR =
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bol and noise variance respectively. Performance measures
(i.e., Decision Squared Error (DSE) ("(n) = y �Dec(y))2 and
Symbol Error Rate (SER) ) are averaged from 200 Monte-Carlo
trials.

For clarity’s safe, our approach is called NBE (New Blind Equal-
izer) in the figures.

Simulations with BPSK modulation were done with two channels.
The discrete impulse response of such channels can be represented
in vectorial form as follows:

f1 = [ 0:1 0:5 1 � 0:6 � 0:2 ]

and
f2 = [ 1 � 0:2 0:71 0:282 0:8658 ]

Channel f1 has no spectral near-nulls as we can see in Fig. 3 (The
representation of channel zeros is also presented in Fig. 4). There-
fore this channel can be “easily equalized” by means of a linear
transversal equalizer (LTE).

Fig. 5 shows the performance of both NBE and CM equalizers
measured in terms of DSE. It can be easily seen that our approach
is equivalent to the CM criterion after convergence. However, the
convergence of the NBE is faster than that of the CMA because
its adaptation step size is the greater. We highlight that a step
size greater than 10�3 provokes divergence of the CM Algorithm.
Table 1 specifies the simulation parameters. That fact indicates
higher robustness to the noise by the NBE.

CMA NBE
TAPs 30 30

Step size 10�3 25:10�3

� — 0.3
Initial TAPs [ 0 � � � 0 1 0 � � � 0 ] [ 0 � � � 0 1 0 � � � 0 ]

Table 1: Simulation Parameters for f1

Channel f2 has two spectral near-nulls, as we can see in Fig. 6 that
shows the frequency response of the channel and Fig. 7 shows the
channel zeros. It is worth noting that those spectral near-nulls rend
the equalization with a LTE more difficult.

Fig. 8 shows the performance of both the NBE and CMA in an
environment with SNR = 30 dB. Table 2 specifies simulation pa-
rameters.

CMA NBE
TAPs 30 30

Step size 10�3 25:10�3

� — 0.29
Initial TAPs [ 0 � � � 0 1 0 � � � 0 ] [ 0 � � � 0 1 0 � � � 0 ]

Table 2: Simulation Parameters for f2



Simulations with 4-QAM modulation scheme were done with the
channel proposed in [9] that has the discrete impulse response
given by:

f3 = [ 2 � 0:4j 1:5 + 1:8j 1 1:2� 1:3j 0:8 + 1:6j]

This channel has been used in some recent works to illustrate the
robustness of algorithms facing a very distorsive channel. The fre-
quency response of this channel is depicted in Fig. 9 whereas Fig-
ure 10 shows the channel zeros.

The performances of both equalizers are depicted in Fig. 11. As
we can see, they have an almost identical performance. However,
we emphasize that in this case the CMA requires a phase recover-
ing device to work whereas the NBE compensates for phase dis-
tortion by itself. Table 3 specifies simulation parameters.

CMA NBE
TAPs 30 30

Step size 10�3 2:10�3

� — 0.35
Step Size Phase 10�3 —

Initial Phase 0 —
Initial TAPs [ 0 � � � 0 1 0 � � � 0 ] [ 0 � � � 0 1 0 � � � 0 ]

Table 3: Simulation Parameters for f3

5. CONCLUSIONS AND PERSPECTIVES

Simulation results had confirmed that when � �= 0:3 our proposal
has a final performance practically equivalent to that of the Go-
dard’s equalizer for both BPSK and 4-QAM modulation schemes.
On the other hand, we also conclude that, thanks to its capacity of
convergence with step-sizes greater than Godard’s, the NBE can
provide faster convergence in some cases.

Furthermore, as illustrated in the last simulation result, the NBE
has no need for a phase recovering device.

Actually, this work has just started and the continuity of it in-
cludes tests involving multi-amplitude complex modulation, like
16-QAM schemes, and the study of an adaptation strategy for the
parameter �. The use of a feedback structure cascaded with the
filter is also under study.
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Figure 3: Frequency Response of Channel f1.
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Figure 4: Root Locus of Channel f1.
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Figure 5: DSE for Channel f1 (SNR = 30 dB).
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Figure 6: Frequency Response of Channel f2.
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Figure 7: Root Locus of Channel f2.
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Figure 8: DSE for Channel f2 (SNR=30 dB).
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Figure 9: Frequency Response of Channel f3.
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Figure 10: Root Locus of Channel f3.
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Figure 11: DSE for Channel f3 (SNR = 30 dB).


