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Abstract—In this paper, we propose a new analytical 

expression for estimating byte loss probability at a single 

server queue with multi-scale traffic arrivals using Pareto 

distribution. In order to make the estimation procedure 

numerically tractable without losing the accuracy, we assume 

and demonstrate that an exponential model is adequate for 

representing the relation between mean square and variance of 

Pareto distributed traffic processes under different time scale 

aggregation. Extensive experimental tests validate the 

efficiency and accuracy of the proposed loss probability 

estimation approach and its superior performance for 

applications in network connection with respect to some well-

known approaches suggested in the literature. 
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I. INTRODUCTION 

Today communication networks must deal with a 

considerable number of different types of traffic, sharing 

common resources through statistical multiplexing. The 

efficient sharing of network resources depends on the 

statistical characteristics of traffic. 

Historically the stochastic models widely used to 

characterize network traffic have been based on Poisson-like 

approaches, and more generally, Markovian modeling. Later, 

Leland et al [8] and other subsequent studies have 

demonstrated that traffic traces of modern high speed data 

networks exhibit fractal properties, such as self-similarity 

and long-range dependence (LRD) [13]. These new 

statistical traffic features, inadequately modeled by classical 

Poisson and Markov models, can strongly impact the 

performance of networks [12]. 

In contrast to the self-similar or monofractal behavior, 

some recent studies suggest that the measured TCP/IP and 

WAN ATM traffic flows exhibit a more complex scaling 

behavior, which is consistent with multifractals [5, 14]. 

Multifractal based traffic modeling is more general than the 

monofractal based and provides a more accurate and detailed 

description of network traffic series in different time scales 

[16]. 

Even taking into account the influence of the long-range 

dependent characteristics, the expected queuing behavior in 

buffer still cannot be adequately modeled without 

considering the multifractal nature of traffic [13]. 
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The loss probability and packet delay are key 

performance  measures  related  to quality of  service  (QoS) 

in computer networks, such as TCP-IP and ATM. Several 

Studies  have  been  conducted  in  order  to  characterize the  

average size of the queue and the distribution of the number 

of packets in the buffer [4][9][13][15]. 

In [4] some lower bounds of the loss probability for self-

similar processes were derived. In [13] a non-asymptotic 

multiscale analysis on some queue models based on 

multifractal cascade concepts were performed. Interesting 

enough, the analysis is valid for any buffer size, i.e., the 

approach, named Multiscale Queuing, incorporates the 

distributions of traffic.  

In [9] the authors describe a statistical model for multi-

scale traffic, deriving an equation for calculating the loss 

probability, whereas the input process traffic has lognormal 

distribution and that only the first two moments are 

sufficient to characterize the process of traffic. The derived 

analytical equation for the loss probability estimation is 

relatively complex and presents convergence when it is used 

numerically. 

Moreover, in [15] the authors used an exponential 

approximation to model the second-order moment of the 

traffic process and derived an analytical expression for the 

loss probability estimation in a single server queue. It was 

assumed that the input traffic has a lognormal distribution. 

The derived analytical formula is computationally attractive 

overcoming the shortcoming of the analytical loss 

probability estimation equation obtained in [9] in terms of 

simplicity, accuracy and rapid convergence. 

In this paper, we present a new approach for loss 

probability estimation in a single server link. We consider 

that the input traffic has a Pareto Distribution.  We show 

how to get the estimates analytically once we assume multi-

scale input traffic. Based on this analytical method, we 

evaluate its potential applications for control admission 

especially when networks traffic holds multi-scaling 

characteristics. 

The paper is organized as follows: in Section II, we 

present the definition of the multi-scaling traffic processes, 

review some their major concepts and analyze the 

characteristics of the second-order statistical moments. In 

Section III, we present the derivation of the analytical 
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expression for the loss probability estimation in a single 

server queue and our proposal for simplifying the analytical 

expression. In Section IV, we compare the proposed method 

to some well-known traffic models mentioned in the 

literature. Finally in Section VI we present our conclusions. 

II. MULTI-SCALING TRAFFIC PROCESSES AND THEIR 

CHARACTERISTICS 

Definition 1: Let ���� be the traffic rate at t. Then 

���� = � ��
	 ���
� will be the arriving load up to t. Denote 

by ���, ∆�� = ��� + ∆�� − ����. The average traffic rate 

is � = �����→� ��∆��/∆�. 

Let �  and ��
 represent the mean and the variance of ��∆��. 

Given � > 0, the accumulative process ���� is said to 

be a multi-scaling process at time scale � if all of the 

following condition are satisfied: 

 

• ���� has a stationary increment at time scale �, i.e., ���, �� = ����. 
• ���� has a Pareto distributed density function with 

parameter � and �:  !����"� = #$%
&%'(. 

• � = ��. 

• There exist an integer ) > 0, a set * = +,-���: 0 <
,-��� < 1, � ≤ )2, a set 3 = 45-���: 0 < 5-��� <
1, � ≤ ), 6 5-��� = 1-78;: 2, and a small constant 

; > 0 such that for any < ∈ +<: � − ; < < < � +;, < > 02 such that  

                                     ��~ 6 5-���<�@�A�:-78                                (1) 

The expression (1) means there exists a probability 

measure for set A, and ,-��� occurs with probability 5-���. 

The continuous version of (1) is 

��~ �  B�A�C�
D� �,�<�@
,                 (2) 

where  B�A� denotes the probability density function of the 

scaling exponents ,���.  Notice that symbol “~” in (2) has 

the following interpretation: E�F�~ G�F� 

implies ���H→IJE�K�/G�K�L = M, where 0 < M < ∞ is a 

constant. 

A. Second-Order Moments of the Multi-Scaling processes 

For simplicity, we assume that the scaling exponents ,��� at time scale � of a traffic process follow a normal 

distribution O P�,Q �Q2S with mean �T and variance �Q2. Here 

we omit the subscript � for �T and �T�.. Therefore, the 

variance of the distribution 2
σ of the traffic process at time 

scale � can be represented as: 

               ��~ � 8
U�VWQ XEF Y− �@D#Q�Z

�WQZ [ ��@
,�
D�          (3)                 

Let \ = ��@, then , = �]�\� J2�]���L^  and 
, 
\^ =

\ �2�]���\�^ . Then Equations (3) becomes 

��~ � \ 8
U�V��_`�A�WQ�a XEF b− J_`�a�D��_`�A�#Q�LZ

���_`�A�WQ�Z c 
\�
	    (4) 

The right hand side of Eq. (4) shows that 2
σ  simply has 

a log-normal distribution d�e, f� with parameters e =
2�]����T and f = �2�]����T��. For the log-normal 

representation given by (4), a simple calculation can show 

that the mean � and variance �� of the distribution of the 

multi-scaling increment traffic process at time scale � are 

related to e and f as: 

� = XEF�e + f� 2^ �                           (5) 
and 

   �� = XEF�2e + f��gXEF�f�� − 1h              (6) 
Therefore, 

e = �]��� − 8
� �] PWZ

iZ + 1S       (7)               

and  

f = j�] PWZ
iZ + 1S        (8) 

 

Under the log-normal distribution of 2
σ , it can be 

shown immediately that  

��~XEFg2�]����T + 2��]����T��h = ��#Q ��WQ_`�A�        (9) 

III. LOSS PROBABILITY ESTIMATION WITH MULTI-

SCALING INPUT PROCESSES 

Let ���� represent a multi-scaling traffic process with a 

Pareto distribution as follows: 

 !����"� = #$%
&%'(   for  " > �    (10) 

where  � = #$
#D8 and �� = P $

#D8S� P #
#D�S are mean and 

variance, respectively. 

The distribution parameters α and k can be determined 

by the knowledge of the μ and σ� of the process X�t�. In 

other words, the mean and variance values can be 

numerically estimated directly from given input network 

traffic flows. Therefore,  

� = iZ
WZ              (11) 

and 

� = � − WZi
iZ     (12) 

or 

� = iZ
WZ + 2    (13) 

and 

� = iqCWZi
iZC�WZ     (14) 

In this section we derive an analytical expression for loss 

probability under a single server queue.  

We assume that the single queue is stable with buffer 

capacity big enough to accommodate any eventual transient 

bursts. Then, the following balance equation can be 

established: 
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r��	� + ��� − �	� = r��� + s�� − �	�           (15) 

where r��� is the queue length at time t, ��� − �	� =���� − ��� − �	� is the cumulative traffic load in the 

period ],[ 0tt , and s�� − �	� denotes the traffic load leaving 

in ��	, ��. Here we assume 

s��� = tJ� − u���L                     (16) 

where C  is the constant service rate and u��� denotes the 

total server idle time of up to t . Let ��0� = 0 and  r�0� =
0. Therefore r���  can be written as: 

r��� = �vE����� − s���, 0�            (17) 

Let w��� = ���� − t� and ∆� = tu���, Equation (17) 

can be expressed as: 

r��� = �vE�w��� + ∆�, 0�         (18) 

Applying the law of total probability, the loss probability 

in queue can be calculated as: 

x_yzz��� = x�r��� > {� = x�w��� + ∆��� > {, w��� > {�
+x�w��� + ∆��� > {, w��� ≤ {�

= x�w��� > {� + xJw��� ≤ { < w��� + ∆���L                  �19�
 

The first term x�w��� > {� in (19) is called the absolute 

loss probability �x}~z� and the second term xJw��� ≤ { ≤
∆���L the opportunistic loss probability JxyIIL. Assuming 

r��� stationary, letting � = 1 − � = 1 − � t^  and using the 

result derived by Benes [1], the second term JxyIIL can be 

written as: 

xyII��� = xJw��� ≤ { < w��� + ∆���L                            
= � �  !�H��

	 ���|�7�HC�
K             (20) 

Also, the absolute loss probability �x}~z� can be written 

as an integral:  

x}~z��� = x�w��� > {� = x����� > t� + {� 

=�  !����
��C� ���
�                       �21�      

Thus, the fully characterized queuing behavior of 

eventually any traffic type in term of information loss is 

given by:  

x_yzz��� = �  !����
��C� ���
x� + � �  !�H��

	 ���|�7�HC�
K    

(22) 

The first term on the right side of Eq. (21) can be further 

detailedly expressed as: 

x}~z��� = �  !����
��C� ���
� = P$

�S#
 for   E ≥ �   (23) 

Thus, the loss probability under the stationary state 

assumption is: 

xz��}����� = x_yzz����→�_-� = � ��  !�H�
�

	
���|�7�HC�
K�

��	

�HI
 

(24) 

or 

xz��}����� = �1 − �
t� � ��#

"#C8 |&7�HC�
K�
	

          �25� 

Note that for multi-scaling traffic series the variables � 

and � can be calculated using equations (11) and (12) or 

(13) and (14), respectively. Substituting the relations given 

by the equations (11) and (12) into (25), the loss probability 

can be estimated by:  

xz��}����� = P1 − �
�S � ��Z

�Z��iD�Z�
�Z �

�Z
�Z

���C���Z
�Z'( 
��

	       (26) 

Again, now substituting the relations given by the equations 

(13) and (14) into (26), the loss probability can be estimated 

by:  

xz��}����� = P1 − �
�S � ��Z

�ZC����q'�Z�
�Z'�Z �

�Z
�Z'Z

���C���Z
�Z'q 
��

	      (27) 

 

where � = �� and  �� = ��#Q ��WQ_`�A�.  
A. Our Approach for Loss Probability Estimation 

In this work, we propose our approach for loss 

probability estimation. The major motivation of the 

proposed approach is to reduce the complexity of the 

numerical integration to be carried out in expressions (26) 

and (27). In other words, we propose the exponential 

approximation given in (28) to describe the relation between 

the square mean and the variance under time scale � in order 

to make the analytical expression for loss probability 

estimation simpler, more efficient without losing the 

accuracy of the estimates.  

iZ
WZ ≅ vXEF��E�

                   (28)
 

where v and � are two parameters of the exponential 

functional model used for the desired fitting.  In general, 

parameters v and � of the exponential fitting function is 

determined from applying the minimum mean square error 

approximation. 

For illustration purpose, the green colored curve in 

Figure 1 is the best exponential function fitting for real 

network traffic lbl_pkt_5 [7]. 

 
Fig 1:  Approximation 
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Under the exponential fitting function modeling given by 

(28), we have two expression for the steady state loss 

probability: 

xz��}����� = �1 − �
t� � JvXEF��E�L ���E� − JvXEF��E�LD8��E��}��I�~��

�tE + {�}��I�~��C8 
E�
	

 

     
(29) 

or 

xz��}����� = �1 − �
t� �

�vXEF��E� + 2� ���E� �vXEF��E� + 1vXEF��E� + 2��
}��I�~��C�

�tE + {�}��I�~��C� 
E�
	

 

(30)
 
 

Figure 2 shows how the loss probability changes in 

terms of buffer size for two loss probability estimation 

equation given by (29) and (30) for traffic lbl_pkt_5. 

Clearly, two loss probability curves are very close. 

 

  Fig 2: Differences between Equations 29 and 30 

IV. EXPERIMENTAL INVESTIGATIONS 

In this section we evaluate our approach for loss 

probability estimation and present our method for traffic 

admission control and dynamic resource allocation. 

A. Loss Probability Estimation:   

Table I summarizes the queuing system configuration 

(server capacity and buffer size) of the single server queue 

used in the simulation. 

Table I:  QUEUING SYSTEM CONFIGURATION 

Traffic Trace Server Capacity (Bytes/s) Buffer Size (Bytes) 

lbl_pkt_5 1.4 x 104 3 x 104 

dec_pkt_1 12 x 105 3 x 105 

Table II compares the loss probability estimates (in 

number of bytes) for these traffic traces feeding a single 

server queue scheme defined in Table I, under the following 

methodologies, namely: 

• Simulation: by simulations;  

• the Duffield: Duffield’s method [4];  

• Lognormal: the proposed exponential approach 

for variance with normal distribution and traffic 

having lognormal distribution;  

• MSQ: Multiscale Queue (MSQ) [13]; 

• CDTSQ: Critical Dyadic Time-Scale Queue 

(CDTSQ) [13]; 

• Proposed: our approach proposed in this paper. 

Notice that the Duffield’s method provides a lower 

bound of loss probability x�r > �� for self-similar 

processes. "Lognormal", "MSQ" and "CDTSQ" are three 

multi-scale analyses for network traffic with long-range-

dependence [13]. Our proposed approach in this work can 

be viewed as an alternative and improved version for the 

Lognormal method proposed in [15].  

TABLE II  LOSS PROBABILITY ESTIMATES 

Traffic Trace lbl_pkt_5 dec_pkt_1 

Simulation 8.14x10-4 1.30x10-3 

Duffield 8.02x10-18 5.61x10-19 

Lognormal 2.31x10-4 4.39x10-5 

MSQ 2.05x10-6 3.13x10-6 

CDTSQ 9.86x10-7 1.45x10-6 

Proposed 4.92x10-4 3.847x10-3 

Figure 3 to 6 compare how loss probability estimates 

vary in function of buffer size and different serve capacities, 

respectively, for the lbl_pkt_5 and dec_pkt_1 traces. Again, 

the proposed approach provides considerably better 

performances.  

 
 Fig.3. Loss Probability versus Server Capacity for the traffic trace 

lbl_pkt_5 

 
Fig.4. Loss Probability versus Size of Buffer for the traffic trace 

lbl_pkt_5 
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Fig. 5. . Loss Probability versus Server Capacity for the traffic trace 

dec_pkt_1 
  

 

Fig. 6 Loss Probability versus Size of Buffer for the traffic trace dec_pkt_1 

 
 

V. CONCLUSION 

In this paper, we present an analytical expression for 

estimating the byte loss probability at a single server queue 

with multifractal traffic arrivals. Initially, we address the 

theory concerning multifractal processes, especially the 

Hölder exponents of the multifractal traffic traces. Next, we 

focus our attention on the second order statistics for 

multifractal traffic processes. More specifically, we assume 

that an exponential model is adequate for representing the 

variance of the traffic process under different time scale 

aggregation. Then, we compare the performance of the 

proposed approach with some other relevant approaches 

(e.g., monofractal based methods, MSQ (multiscale queue) 

and CDTSQ (Critical dyadic time-scale queue)) using real 

traffic traces. The simulation results shows that the proposed 

estimation of loss probability is simple, accurate. 
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