ESTRUTURAS NÃO-LINEARES APLICADAS À RECUPERAÇÃO DE SINAIS BINÁRIOS

Magno T. Madeira da Silva^{1*}, Max Gerken^{2*}, Maria D. Miranda³

 (1,2) Departamento de Engenharia de Telecomunicações e Controle Escola Politécnica da Universidade de São Paulo <http://www.lcs.poli.usp.br> {magno, mgk}@lcs.poli.usp.br
 (3) Universidade Presbiteriana Mackenzie, São Paulo, SP Curso de Pós-Graduação em Engenharia Elétrica

RESUMO

Neste artigo é feita uma comparação do desempenho de quatro estruturas para recuperação de sinais binários: um filtro linear transversal e três diferentes tipos de redes neurais. São consideradas implementações com e sem realimentação de decisões já tomadas. Em geral, a introdução da realimentação de decisões resulta numa melhora de desempenho ou numa diminuição de complexidade para uma mesma taxa de erro. É apresentado um exemplo que explica este efeito, baseado na interpretação do problema de equalização como um problema de classificação.

1. INTRODUÇÃO

A equalização adaptativa linear é uma técnica largamente empregada em comunicações digitais com o objetivo de minorar os efeitos indesejáveis da interferência intersimbólica e do ruído no canal de transmissão. Entretanto, em muitas situações realistas, por exemplo quando os canais não são de mínima fase e/ou apresentam não-linearidades, o equalizador linear nem sempre é uma solução ótima. Este é o caso da comunicação por satélite [1], [5]. Diante disso, estruturas não-lineares vêm sendo amplamente estudadas [1]-[5] com o objetivo de serem empregadas em equalização. Exemplos são as configurações baseadas no filtro transversal com realimentação de decisões (*Decision Feedback Equalizer* - DFE), as baseadas em séries de Volterra e as que usam redes neurais.

As redes neurais, apesar de serem computacionalmente complexas, apresentam vantagens sobre outras estruturas não-lineares como, por exemplo, as baseadas em séries de Volterra. Isso se deve ao alto grau de paralelismo das redes neurais que as tornam atraentes para implementação em circuitos integrados [1]. Configurações utilizando realimentação de decisões têm sido recentemente combinadas com essas redes com o objetivo de reduzir a interferência intersimbólica, procurando melhorar o desempenho do equalizador.

Uma comparação teórica entre diferentes estruturas não-lineares não é muito evidente devido às dificuldades inerentes ao problema. Desta forma, foram feitas simulações visando comparar o desempenho de algumas dessas estruturas. As configurações escolhidas foram o filtro transversal, a rede de perceptrons multicamada (*Multilayer Perceptrons* - MLP), a rede neural utilizando funções de base radial (*Radial Basis Functions* - RBF) e uma rede neural recorrente (*Recurrent Neural Network* - RNN). Todas estas estruturas, exceto a última, foram também testadas com realimentação de decisões (*Decision Feedback* - DF).

No texto a seguir são descritas as configurações utilizadas e as respectivas complexidades computacionais. São também apresentadas curvas de taxa de erro de bits em função da relação sinalruído sendo feita uma comparação de desempenhos. No final, é apresentada uma explicação para a melhora de desempenho obtida com o uso de realimentação de decisões.

2. ESTRUTURAS UTILIZADAS

As simulações das estruturas seguem o esquema básico de equalização da Fig. 1, onde H(z) é a transformada-Z da resposta ao pulso unitário finita (FIR) do modelo do canal, n(k) representa o ruído branco gaussiano adicionado na saída do canal e $\hat{y}(k)$ é a seqüência de observação na entrada do receptor. Os inteiros M e τ_d representam o número de entradas e o atraso do equalizador respectivamente. O problema a ser considerado é como usar a seqüência $\hat{y}(k)$, $\hat{y}(k-1)$, ..., $\hat{y}(k-M+1)$ para estimar no instante k o símbolo transmitido $x(k - \tau_d)$. Na fase de treinamento o sinal de entrada atrasado $x(k - \tau_d)$ é usado como sinal de referência. Obtém-se dessa forma o sinal de erro e(k) que é utilizado pelo algoritmo de treinamento, a própria estimativa $\hat{x}(k - \tau_d)$ é utilizada para o cálculo do erro [6].

As estruturas com realimentação de decisões seguem o esquema

Fig. 1. Esquema básico empregado para equalização adaptativa.

^{*} Este trabalho foi financiado pela FAPESP¹ (proc. 99/00188-0) e CNPq² (proc. 300521/92-8).

Fig. 2. Esquema empregado para equalização adaptativa com DF.

da Fig. 2. Neste caso, a entrada do equalizador é constituída de M_f amostras da seqüência $\hat{y}(k)$ e M_b amostras das decisões já tomadas $\hat{x}(k)$.

2.1. O Equalizador Linear Transversal (LTE)

No caso do Equalizador Linear Transversal (*Linear Transversal Equalizer* - LTE), o problema de equalização consiste em aplicar um algoritmo adaptativo para estimar a cada instante k o símbolo transmitido $x(k - \tau_d)$ [6] como

$$\hat{x}(k-\tau_d) = sgn\left(\sum_{j=0}^{M-1} w_j \hat{y}(k-j)\right) \,,$$

sendo w_j os pesos a serem adaptados pelo algoritmo e sgn(x) = -1 para $x \le 0$ e sgn(x) = 1 para x > 0.

É comum utilizar um algoritmo adaptativo do tipo gradiente estocástico, ou dos mínimos quadrados recursivo (*Recursive Least Squares* - RLS), ou ainda variações destes. Neste trabalho, o algoritmo usado na implementação do LTE foi o da família LSL (*Least Squares Lattice*) a priori com realimentação de erro [7] (EF-LSL). Este algoritmo foi usado porque apresenta um bom compromisso entre estabilidade e complexidade numéricas [7]. A implementação deste algoritmo exige a execução de 13*M* multiplicações, 2*M* divisões e 9*M* somas, sendo *M* o número de parâmetros ajustáveis do filtro adaptativo. Mais detalhes podem ser encontrados em [6] e [7].

2.2. A rede MLP (Multilayer perceptrons)

Tipicamente uma rede MLP consiste de um conjunto de nós (neurônios) que estão dispostos em uma camada de entrada, em uma ou mais camadas ocultas e uma camada de saída [8]. A configuração de uma rede com L camadas é indicada por $(M_1, M_2, ..., M_L)$, sendo M_l o número de nós da camada l.

O sinal de entrada se propaga pela rede progressivamente, camada por camada. Em cada nó j da camada l, é calculada a soma ponderada das entradas $z_i^{(l-1)}$ adicionada a um nível de ajuste $\theta_j(bias)$, obtendo-se o nível de atividade interna $v_j^{(l)} = \sum_{i=1}^{M_{l-1}} (w_{ji}^{(l)} z_i^{(l-1)} - \theta_j)$. Nesta expressão o peso $w_{ji}^{(l)}$ representa o ganho da conexão entre os neurônios i da camada (l-1) e j da camada (l). Este resultado é aplicado a uma função de ativação $\varphi(\cdot)$ que usualmente é uma função sigmoidal definida como

$$\varphi(v) = (1 - e^{-cv})/(1 + e^{-cv}), \tag{1}$$

sendo c uma constante inteira positiva. Neste trabalho, utilizou-se a função sigmoidal com c = 2. Obtém-se assim a saída $z_i^{(l)} =$

 $\varphi(v_j^{(l)})$ do nó j da camada l. Este cálculo é repetido para todos os nós, camada por camada.

A rede MLP é foi treinada com o algoritmo *Backpropagation* (BP) que é baseado no algoritmo do gradiente estocástico [8]. A complexidade computacional deste algoritmo na fase de treinamento é mostrada na Tabela I. Nesta Tabela, M_0 representa o número de entradas da rede. A operação NL indica o número de vezes em que se utiliza a função não-linear incluindo também a utilização de sua derivada que é usada no algoritmo de treinamento.

Operações	N ^o de operações por iteração		
×	$M_A + 5M_B$		
NL	$2M_B$		
+	$M_A + M_B + 2M_L$		

Tabela I

Complexidade computacional do algoritmo BP na fase de treinamento de uma rede MLP $(M_1, M_2, ..., M_L)$, sendo $M_A = 3M_0M_1 + 4(M_1M_2 + M_2M_3 + ... + M_{L-1}M_L),$ $M_B = M_1 + M_2 + ... + M_L.$

2.3. A rede RBF (Radial Basis Function)

A rede RBF consiste usualmente de três camadas de neurônios sendo que a primeira alimenta a segunda diretamente (pesos iguais a 1) e a camada de saída é apenas um combinador linear [8], [4]. A camada oculta implementa um mapeamento não-linear que é calculado em dois passos. No primeiro passo, o sinal de entrada $\hat{\mathbf{y}}(k) = [\hat{y}(k) \ \hat{y}(k-1) \ \cdots \ \hat{y}(k-M+1)]^T$ é comparado com um conjunto de vetores de referência $\mathbf{r}_i(k)$ para i = 0, 1, ..., M - 1, sendo M o número de nós ocultos. Estes vetores são chamados de centros. A comparação entre o sinal de entrada e os centros pode ser feita através da norma Euclidiana gerando um conjunto de distâncias $s_i(k) = \|\hat{\mathbf{y}}(k) - \mathbf{r}_i(k)\|, i = 0, 1, ..., M - 1.$ Estas distâncias são então aplicadas a uma função não-linear com simetria radial que normalmente é uma gaussiana: $f(s_i(k)) =$ $exp(-s_i^2(k)/\sigma_i^2(k))$. O parâmetro $\sigma_i(x)$ controla o espalhamento da função e consequentemente o seu raio de influência [4]. O sinal de saída é calculado como $F(\hat{\mathbf{y}}(k)) = \varphi[\mathbf{w}^T(k)f(\mathbf{s}(k))]$, sendo $\varphi(\cdot)$ a função de ativação, usualmente sigmoidal. A atualização dos pesos foi feita usando um algoritmo do tipo gradiente estocástico (LMS) [8]. A complexidade computacional deste algoritmo no treinamento de uma rede RBF com uma saída é mostrada na Tabela II.

Operações	N ^o de operações por iteração
×	$M_0M_1 + 3M_1 + 4$
NL	$M_1 + 1$
+	$2M_0M_1 + 2M_1 + 3$

Tabela II

Complexidade computacional na fase de treinamento de uma rede RBF com uma saída, considerando a atualização dos pesos segundo o LMS, sendo M_0 o número de entradas da rede e M_1 o número de neurônios da camada oculta.

2.4. A rede RNN (Recurrent Neural Network)

Uma RNN de M entradas externas tem em geral N unidades completamente interconectadas [3]. Um exemplo com M = 1 e N = 3 pode ser visto na Fig. 3. No caso de uma RNN, a saída de

Fig. 3. RNN com N = 3, M = 1, entrada x e saída y_3 .

uma unidade no tempo k + 1 não somente depende das entradas externas do instante de tempo anterior $(x_j(k), j = 1, ..., M)$ mas também das saídas anteriores de todas as unidades $(y_j(k), j = 1, ..., N)$. A dinâmica de uma RNN é descrita pelas equações

$$v_j(k+1) = \sum_{i=1}^N w_{ji}(k)y_i(k) + \sum_{i=1}^M w_{j,i+N}(k)x_i(k), \quad (2)$$

e

$$y_j(k+1) = \varphi(v_j(k+1)). \tag{3}$$

Nestas expressões $w_{ji}(k)$ é o peso da conexão entre as unidades i e j no tempo k e $\varphi(\cdot)$ usualmente é a função de ativação sigmoidal da equação (1).

Entre os algoritmos propostos para o treinamento da RNN, o mais conhecido é o RTRL (*Real-Time Recurrent Learning*) [3], [8] que pode ser usado para atualizar os pesos em tempo real. Nesse caso o sinal de erro é calculado pela equação

$$e_j(k) = \begin{cases} d_j(k) - y_j(k), & j \in \mathcal{N}_s \\ 0, & j \notin \mathcal{N}_s, \end{cases}$$
(4)

sendo d_j o sinal desejado e \mathcal{N}_s o conjunto das unidades visíveis cujas saídas são saídas da rede. No exemplo da Fig. 3, o conjunto \mathcal{N}_s é formado apenas pelo neurônio 3. Os pesos são atualizados de acordo com a equação

$$w_{\lambda l}(k+1) = w_{\lambda l}(k) + \eta \Delta w_{\lambda l}(k), \tag{5}$$

sendo η o passo de aprendizagem e

$$\Delta w_{\lambda l}(k) = \sum_{j \in \mathcal{N}_s} e_j(k) \Pi^j_{\lambda l}(k).$$
(6)

O termo $\Pi^j_{\lambda l}(k)$ é calculado como:

$$\Pi^{j}_{\lambda l}(k) = \varphi'(v_j(k-1)) \left[\sum_{i \in \mathcal{N}_o} w_{ji}(k-1) \Pi^{i}_{\lambda l}(k-1) + \right]$$

$$+\delta_{\lambda j}u_l(k-1)\bigg],\qquad \Pi^j_{\lambda l}(0)=0,\tag{7}$$

sendo

•
$$\varphi^{\circ}(\cdot)$$
 a derivada da função $\varphi(\cdot)$;
• $u_l(k-1) = \begin{cases} x_l(k-1) & i \in \mathcal{N}_e \\ y_l(k-1) & i \in \mathcal{N}_o \end{cases}$;
• $\delta_{\lambda j} = \begin{cases} 1 & \lambda = j \\ 0 & \lambda \neq j; \end{cases}$;

- \mathcal{N}_o o conjunto formado por todas as unidades menos as de entrada da rede; e

• \mathcal{N}_e o conjunto formado apenas pelas unidades de entrada.

A complexidade computacional do algoritmo RTRL para uma rede com N unidades completamente interconectadas e M entradas externas é mostrada na Tabela III.

Operações	N ^o de operações por iteração		
×	$M[N^2(N+1)+2]+$		
	$+(N+1)(N^3+1)+2N^2$		
NL	2N		
+	$MN(N^2 - N - 3) +$		
	$(1-N)(1-N^3) + 3N^2$		

Tabela III

Complexidade Computacional do algoritmo RTRL, no treinamento de uma rede RNN com M entradas e N unidades.

3. RESULTADOS EXPERIMENTAIS

As funções de transferência dos canais usados nas simulações estão na Tabela IV. O canal H2 segue um modelo não-linear apresentado em [5], em que se separa a parte linear da não-linear. A saída deste canal é $y_1(k)$, sendo y(k) a saída da parte linear.

H1(Linear com fase não-mínima [2])
$H_1(z) = 0,3482 + 0,8704z^{-1} + 0,3482z^{-2}$
Zeros: {-0,5001; -1,9996}
H2(Não-Linear [5])
Parte não-linear: $y_1(k) = y(k) + 0, 2y^2(k) - 0, 1y^3(k)$
Parte linear: $H_{2l} = H_1(z)$
Zeros da parte linear: {-0,5001; -1,9996}
H3(Linear com zeros no círculo unitário [3])
$H_3(z) = 1 - 2z^{-1} + z^{-2}$
Zeros: {1; 1}

Tabela IV

MODELOS DE CANAIS DE COMUNICAÇÃO USADOS NAS SIMULAÇÕES.

Com o objetivo de comparar o desempenho dos diversos tipos de equalizadores, foram obtidas experimentalmente curvas de taxa de erro de bits para os canais da Tabela IV. Considerou-se os pesos dos equalizadores fixos, depois dos algoritmos de treinamento dos mesmos terem convergido. Nesta situação, utilizou-se uma seqüência de 10^6 ou 10^7 bits para a medida da taxa de erros. Com isso, o número mínimo de erros para uma dada relação sinal-ruído resultou sempre maior que 30.

As configurações de cada equalizador usado estão mostradas na Tabela V. Todos os equalizadores utilizados são de 4^{a} ordem (M = 5) e o atraso é de 3 amostras ($\tau_{d} = 3$), o que é suficiente para definir a estrutura do LTE. Para a rede MLP utilizou-se a configuração proposta por Gibson *et. al.* em [2]. Para a rede RNN, por sua vez, segue-se a configuração de [3] tomando-se o cuidado de aumentar o número de entradas externas.

No caso da RBF, o número de neurônios utilizados é bem maior que nas outras estruturas. Considerando uma situação sem ruído, para M = 5 e um canal de $2^{\underline{a}}$ ordem, o número total de diferentes entradas possíveis (estados de entrada do equalizador) é 128 [4]. Dessa forma, se tais estados fossem conhecidos poder-se-ia usar 128 neurônios na camada oculta da RBF com centros nestes estados para implementar um equalizador quase ideal. No entanto, a rede foi treinada com 256 unidades ocultas, cujas funções gaussianas ficaram centradas nos vetores iniciais de entrada e a variância foi feita igual à do sinal. Ou seja, o fato de não se conhecer os estados de entrada foi compensado com o aumento do número de neurônios. Não foi utilizada nenhuma técnica para adaptação dos centros e variâncias.

Op.	LTE	MLP	RBF	RNN
		(5,9,3,1)	$(M_1 = 256)$	(N = 3)
Х	65	465	2052	320
÷	10	_		_
NL	_	36	257	6
+	45	395	3075	124
Tabala V				

Configurações dos equalizadores utilizados e número de operações de seus algoritmos de treinamento para M=5.

Na Fig. 4-a, estão representadas as curvas de taxa de erro de bits para o canal H1. Neste caso, o desempenho do equalizador MLP para o intervalo de relação sinal-ruído (SNR) considerado é muito próximo ao do obtido com o equalizador linear. No entanto, os equalizadores RBF e RNN possuem desempenhos superiores ao do equalizador MLP e consequentemente ao do linear. É importante notar que a rede recorrente consegue resultados melhores que os da RBF, possuindo uma complexidade computacional aproximadamente 6 vezes menor no treinamento (considerando o número de multiplicações dos algoritmos RTRL e LMS para atualização dos pesos e a configuração da Tabela V).

No caso do canal H2, obtém-se as curvas de taxa de erro de bits da Fig. 4-b. Nota-se que neste caso, o equalizador MLP apresenta um desempenho superior ao do linear, diferente do que acontece nos canais lineares. Além disso, observa-se que o equalizador não-linear recorrente (RNN) apresenta novamente o melhor desempenho.

Considerando agora o canal H3, obteve-se as curvas de taxa de erro de bits da Fig. 4-c. Para este canal, o desempenho da rede recorrente (RNN) é muito superior ao desempenho dos outros equalizadores.

A partir dessas simulações, observou-se que a rede recorrente treinada com o algoritmo RTRL possui um desempenho superior a todos os tipos de equalizadores apresentados. Além disso, como pode ser observado na Tabela V, seu algoritmo de treinamento apresenta a menor complexidade computacional quando comparado aos algoritmos de treinamento das outras redes consideradas. Os bons resultados da rede neural recorrente sugerem a introdução de algum tipo de recorrência nas redes MLP e RBF visando a melhora

Fig. 4. Curvas de taxa de erro de bits para M = 5, $\tau_d = 3$, 2-PAM, configurações dos equalizadores da Tabela V e canal a) H1; b) H2; c) H3.

de desempenho. Isso pode ser feito de diversas formas, mas a que é mais usual quando se trata de equalização, é a realimentação de decisões (DF). Fez-se então simulações para os canais da Tabela IV utilizando esta técnica (Fig. 2).

No caso do uso de DF utiliza-se M_f entradas correspondentes à seqüência de saída do canal afetada de ruído e M_b entradas relacionadas à realimentação de decisões. Para efeito de comparação, as estruturas com DF foram simuladas com o mesmo número de entradas das estruturas sem DF, isto é, $M = M_f + M_b$. Verificouse experimentalmente que se deve usar $M_f > M_b$ para obter melhores resultados.

Comparando as Figuras 4 e 5, conclui-se que a realimentação das decisões já tomadas garante um melhor desempenho na equalização. Para o canal H3, por exemplo, a realimentação de decisões possibilitou uma melhora do desempenho do LTE e das redes MLP e RBF, sendo que tais redes apresentam resultados superiores aos da rede recorrente considerada.

Para o canal H2, houve melhoras no desempenho das redes MLP e RBF, enquanto que o LTE-DF apresentou maior taxa de erros que a estrutura implementada sem DF. Isso decorre da realimentação de decisões errôneas, o que aumenta a probabilidade de erro desse equalizador. Porém, esse efeito não foi observado quando se utilizou as estruturas não-lineares na equalização, fato que merece ser estudado mais a fundo. Um outro aspecto que merece maior atenção está relacionado aos valores de M_f e M_b . Por exemplo, independentemente do canal simulado, a rede RBF com $M_f = 3$ e $M_b = 2$ tem um desempenho muito pior do que com $M_f = 4$ e $M_b = 1$. Isso pode estar relacionado com o número de neurônios da rede e/ou com o tipo de canal utilizado. Esse problema também deve ser investigado mais a fundo com o objetivo de se escolher esses números de uma forma mais sistemática.

Quando se usa a realimentação de decisões, torna-se possível a redução do número de neurônios das redes para uma mesma probabilidade de erro. No caso do canal H2, isso pode ser comprovado observando-se a Fig. 6 e a Tabela VI. Nota-se que com uma configuração mais simples (MLP2 e RBF2) e com o uso da realimentação de decisões, o desempenho dessas redes ainda é comparável ao das consideradas anteriormente. Na Fig. 6 é mostrada também a taxa de erro de bits da rede RNN que, para este canal, ficou bem próxima das demais obtidas com realimentação de decisões. Comparando agora as Tabelas V e VI, observa-se que, mesmo com o uso de recorrência, as redes MLP e RBF apresentam um treinamento com maior complexidade que a rede RNN. Comparando-se a complexidade computacional dos algoritmos de treinamento da rede MLP da Tabela VI com a rede RNN da Tabela V, observa-se que a primeira necessita de um menor número de multiplicações e de um maior número de somas e de cálculos de não-linearidades (NL). Desta forma, a rede RNN parece ser uma boa alternativa para a equalização não-linear, considerando a complexidade computacional de seu algoritmo de treinamento e o desempenho obtido.

Op.	MLP_2	RBF_2	
	(5,5,2,1)	$(M_1 = 150)$	
×	288	1204	
÷	-	_	
NL	26	151	
+	238	1803	
	•	•	

Tabela VI

Configurações dos equalizadores $MLP_2 \in RBF_2$ utilizados para obtenção da Figura 6 e os número de operações no treinamento.

4. A EQUALIZAÇÃO COM REALIMENTAÇÃO DE DECISÕES VISTA COMO CLASSIFICAÇÃO

A interpretação de um equalizador como um classificador permite entender porque ocorrem melhoras com o uso da realimentação de decisões. Para exemplificar, será considerado um canal com função de transferência $H(z) = 0, 5 + z^{-1}$ e um equalizador com duas entradas (M = 2). Supondo transmissão binária sem ruído, as possíveis entradas do equalizador y(k) e y(k-1), chamadas aqui de estados, são calculadas através das combinações de x(k), x(k-1) e x(k-2). Na Tabela VII estão listadas todas as possíveis entradas do equalizador na situação de ruído nulo.

Fig. 5. Curvas de taxa de erro de bits para $M_f = 3$, $M_b = 2$ (MLP e LTE) e $M_f = 4$, $M_b = 1$ (RBF), $\tau_d = 3$, 2-PAM, configurações dos equalizadores da Tabela V, utilização de realimentação de decisões e canal a) H1; b) H2; c) H3.

Considerando um equalizador de $1^{\underline{a}}$ ordem $(M = 2, \tau_d = 0)$ e o canal da Tabela VII obtém-se a curva de separação do equalizador ótimo segundo Bayes [4] mostrada na Fig.7-a. Nesta Figura, nota-se que a curva ótima de separação segundo Bayes é não-linear, o que faz com que um equalizador linear não atinja um bom desempenho.

Supondo agora que a decisão $\hat{x}(k-1)$ esteja correta, podese utilizá-la juntamente com y(k), y(k-1) para estimar x(k). Assim, obtém-se as regiões de separação das Figuras 7-b e 7-c que também se referem ao canal $H(z) = 0, 5 + z^{-1}$ com atraso nulo.

A partir dessas figuras, conclui-se que neste caso a realimentação de decisões corretas garante um melhor desempenho na classificação devido à separação dos estados em dois

Fig. 6. Curvas de taxa de erro de bits para M=5 (RNN), $M_f=3, M_b=2$ (MLP) e $M_f=4,\ M_b=1$ (RBF), $\tau_d=3,$ 2-PAM, configurações dos equalizadores MLP₁, RBF₁ e RNN segundo a Tabela V, e MLP₂, RBF₂ segundo a Tabela VI; canal H2.

planos distintos. No caso em que se considerou atraso nulo sem a realimentação de decisões, um equalizador linear transversal não consegue proporcionar uma separação coerente das regiões de decisão. Por outro lado, fazendo uso da decisão passada $\hat{x}(k-1)$, ainda no caso de atraso nulo, o equalizador linear passa a ser ótimo segundo Bayes para uma relação sinal-ruído de 10 dB.

5. REFERÊNCIAS

- BOUCHIRED, S.; ROVIRAS, D.; CASTANI, F. Equalisation of satellite mobile channels with neural network techniques. *Space Communications*, v. 15, p. 209-220, 1998/1999.
- [2] GIBSON, G. J.; SIU, S.; COWAN, C. F. N. The aplication of nonlinear structures to the reconstruction of binary signals. *IEEE Transactions on Signal Processing*, v. 39, p.1877-1884, Aug.1991.
- [3] KECHRIOTIS, G.; ZERVAS, E.; MONOLAKOS, E. S. Using recurrent neural networks for adaptive communication channel equalization. *IEEE Transactions on Neural Networks*, v.5, p.267-278, Mar. 1994.
- [4] MULGREW, B. Applying radial basis function. *IEEE Signal Processing Magazine*, v.13, p.50-65, Mar. 1996.
- [5] DESTRO FILHO, J. B. Egalisation aveugle de canaux de communication à l'aide d'algorithmes de Bussgang de réseaux neuronaux. Nice, 1998. 261p. Thèse de Docteur en Sciences - Ecole Doctorale "Sciences Pour l'Ingénieur", Université de Nice-Sofhia Antipolis.
- [6] HAYKIN, S. Adaptive Filter Theory. 3.ed. New Jersey, Prentice Hall, 1996.
- [7] MIRANDA, M. D.; GERKEN, M.; SILVA, M. T. M. Efficient implementation of error-feedback LSL algorithm. [Letter]. *Electronics Letters*, v.35, n.16, p.1308-1309, Aug. 1999.
- [8] HAYKIN, S. *Neural Networks*. 2.ed. New Jersey, Prentice Hall, 1999.

x(k)	x(k-1)	x(k-2)	y(k)	y(k-1)
1	1	1	1,5	1,5
1	1	-1	1,5	-0,5
-1	1	1	0,5	1,5
-1	1	-1	0,5	-0,5
1	-1	1	-0,5	0,5
1	-1	-1	-0,5	-1,5
-1	-1	1	-1,5	0,5
-1	-1	-1	-1,5	-1,5

Fig. 7. Estados desejados; – curva ótima de separação das regiões de decisão, 2-PAM, SNR=10dB, $\tau_d = 0, H(z) = 0, 5 + z^{-1}$, a) Sem o uso do DF, M = 2; b) Com o uso do DF, $M_f = 2, M_b = 1, \hat{x}(k-1) = 1$; c) Com o uso do DF, $M_f = 2, M_b = 1, \hat{x}(k-1) = -1$;