
Abstract
In this paper, we introduce a simple greedy policy for con-

nection admission of video streams. We show that this simple pol-
icy produces, for moderate to high loads the same revenue as the
revenue produced by a policy based on a Knapsack solution
which maximizes the total network revenue. This simple policy is
a potential good candidate for fast connection admission manage-
ment in ATM networks.

1 Introduction
Several studies [1]-[4] have claimed that different types of

network traffic, e.g. video streams, can be accurately modeled by
a self-similar process. A self-similar process is able to capture the
long-range dependence (LRD) phenomenon exhibited by this
traffic. Moreover, series of simulation and analytical studies [5],
[6] have demonstrated that this phenomenon might have a perva-
sive effect on queueing performance. In fact, there is clear evi-
dence that it can potentially cause massive cell losses in ATM
networks. Furthermore, this queueing system suffers from the
buffer inefficacy phenomenon. By just increasing the buffer size
we are not able to significantly decrease the buffer overflow prob-
ability.

Connection admission is a traffic management mechanism
which aims at controlling the acceptance of incoming connections
so that the required QoS of all connections are provided. One of
the key ideas behind Asynchronous Transfer Mode (ATM) is the
statistical multiplexing of heterogeneous packetized streams. The
concept of Effective Bandwidth is intimately connected with
admission control and associated service requirement [7]. The
equivalent bandwidth of a connection (source) is a
characterization of the connection demanded bandwidth such that
its QoS requirements are supported in a network based on
statistical multiplexing. Designers have gravitated towards the
concept of equivalent bandwidth because it promises to bridge to
familiar circuit-switched network design. Although there is a
remarkable collection of equivalent bandwidth results (mainly
based on the theory of large deviation [8]-[9] and on spectral
expansion for Markov fluid models [7]) very few results are
available for traffic with long-range dependencies [8].

In [10] we proposed a new traffic model called a fractional
Brownian motion (fBm) envelope process which characterizes a
LRD source. We also derived a new framework for computing
probabilistic delay bounds for a deterministic queuing system, as a
model of an ATM network, driven by this source. We showed that
the delay bounds agree with known results obtained by large
deviation theory. This new traffic characterization made possible
a more intuitive understanding of the dynamics of the queuing
system, and we derive three time-scales that completely
characterize the queuing system behaviour in [11]. In [12], we

showed how to use the previously defined framework to derive
connection admission management based on realistic assumption.

In this paper, we introduce a simple connection admission
policy for video streams. We show that this simple policy produces
the same revenue, for moderate to high loads, as the revenue
produced by a policy target at maximizing the total revenue. Such
policy is a potential good candidate for fast connection admission
management.

This paper is organized as follow. In section II, we show
an envelope process for a fractal Brownian motion process. In
section III, we derive the time scale of interest for a queuing
system fed by a self-similar process. In section IV, we show how
to analyse the statistical multiplexing of videio streams, and, in
section V, we introduce a policy for fast connection admission
management of video streams. Finally, conclusions are drawn in
section VI.

2. A Fractal Brownian Motion Envelope Proc-
ess

It is well known that for a Brownian motion (Bm) process

A(t) with mean and variance σ2, the envelope process can

be defined by [13]

The parameter k determines the probability that A(t) will

exceed  at time t. Since A(t) is a Brownian motion process

we can write:

where Φ(ψ) is the residual distribution function of the standard
Gaussian distribution. Using the approximation

we find k such that . Hence, k is given by

We claim that , where .
This approach can be extended to deal with LRD traffic. Let

 be a fractional Brownian motion process with mean .

Hurst’s law states that the variance of the increment of this process

is given by where

is the Hurst parameter. Thus, we can also define a
fBm envelope process by:

 (1)

The Brownian motion envelope process is just the special
case of H = 1/2. Similarly, k determines the probability that
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will exceed . In addition, since the process exhibits

LRD, if  exceeds  at time t, it is possible that it will

stay above it for a long period of time.

We should note that the source does not necessarily need
to be self-similar in order to match this characterization, as long as
it matches the behaviour of the envelope process over the time-
scale of interest. We investigate the accuracy of the fBm envelope
process representation by inspecting how well it can model the
worst-case behaviour of real network traffic. Assume that the input
traffic is characterized by trace with N sample points, defined by
A(t), where A(t) represents the cumulative number of cell arrivals

up to time t, . We propose a very simple method for
computing the fBm envelope process parameters for this trace, by
computing the trace’s optimal envelope process. The advantage of
this approach relies on the fact that we do not need to accurately
estimate the trace’s Hurst parameter. The optimal envelope
process (the worst-case sample path) for this trace is defined by

. We assume that the process is

stationary so that Y(t), t = t - s defines the maximum number of cell
arrivals in an interval of size t. Therefore, we can choose the fBm

envelope process’s parameters (.) so that it matches the

behaviour of Y(.).

We extensively validated the effectiveness of the fractal
Brownian motion envelope process by utilizing several traces of
true network data as well as synthetic traces generated by
Mandelbort’s procedure [14]. Results indicate that the fBm
envelope process is a close upperbound for a fBm process.
Moreover, the fBm envelope process is highly accurate in all the
mentioned ranges.

The fBm envelope presents several advantages:

• It is parsimonious, i.e. only three parameters are required
in order to completely characterize a source;

• It can represent SRD and LRD, i.e, the source does not
necessarily need to be LRD. We need only to choose the
parameters for the fBm envelope process so that it matches the
source’s optimal envelope process over the appropriate time-scale;

• The input parameters , σ, and H can be provided by the
source or estimated in real-time from the incoming traffic sample
by estimating its optimal envelope process;

• It provides very accurate delay bounds with minimal
computational complexity.

3. Time Scale of Interest
In this section, we show the time until a queue reaches its

maximum occupancy, in a probabilistic sense. The queue size at
this time gives us a simple delay bound [10]. A rigorous
mathematical derivation of the delay bound can be found in [11].
Here, we introduce an heuristic derivation in order to preserve the
intuition behind the framework presented in this paper. Consider a
continuous-time queuing system, with deterministic service given

by c. The cumulative arrival process is given by

( ). Let , continuous and differentiable, be the

probabilistic envelope process of  such that

During a busy period which starts at time 0, the number of

cells in the system at time t is given by . Thus,

.

By defining  as

 (2)

We can see that

The maximum delay in a FIFO queuing system is given by
the maximum number of cells in the queue during the busy period.
We define

Therefore,

We can say that the queue length at time t q(t) will only
exceed the maximum queue length qmax with probability e. In

other words, only when the arrival process exceeds the envelope
process, will the maximum number of cells in the system exceed
its estimated value. Intuitively, by bounding the behaviour of the
arrival process we are able to transform the problem of obtaining
a probabilistic bound of the stochastic system defined by

 into an easier problem of finding the

maximum of a deterministic system described by

.

For the case of the fBm process, we substitute the envelope
process defined previously into Equation 2 which gives

 (3)

In order to compute qmax we need to find  such that

or equivalently,

 (4)

Hence,  is given by

The time-scale of interest is defined by the time until a

queue size reaches its peak, i.e., . We call it the Maximum
Time-Scale (MaxTS), and it defines the point in time where the
unfinished work in the queuing system achieves its maximum in a
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q̂ t( ) ÂH t( ) ct 0≥–=

P q t( ) q̂ t( )>( ) P AH t( ) ÂH t( )>( ) ε≤=
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probabilistic sense. It means that the average arrival rate just
dropped below the link capacity so that the queue size starts
decreasing. The average arrival rate converges to the source's
mean arrival rate by the law of large numbers. Consequently, we
only need to worry only about the time scale for which the source's
rate still exceeds the link capacity, in a probabilistic sense. In other
words, after a period of time, the probability that the average
arrival rate exceeds the link capacity is negligible, so that the
arrival model does not need to reproduce the source's behaviour
for those time-scales. This is the most important time-scale in
terms of traffic modelling. As a rule of thumb to choose the
parameters of an input source in order to match the fBm envelope
process, we need to find MaxTS analytically, and to choose the
parameters of the fBm process, so that it matches the source's
optimal envelope process at MaxTS.

Substituting  back into Equation 2, we conclude that:

 (5)

Since the fBm process does not exceed  with

probability 1 - ε, the maximum number of cells will be bounded by

qmax with the same probability. We find  so that qmax is equal to

K. In other words, a buffer of size K will overflow with probability

ε if the link capacity is . Therefore,  is given by

This result was also obtained by Norros [15] and Duffield
[16]. In summary, our framework allow us to compute delay
bounds with little computational effort yet achieve the same accu-
racy of the results predicted by large deviation theory. We have
also reduced the sensitivity of the estimation process by using a
bound rather than attempting to directly estimate the parameters
from the full trace.

4. Statistical Multiplexing of Self-Similar
Sources

In this section, we use MaxTS to derive expressions for
predicting the equivalent bandwidth and buffer requirements of an
aggregate of self-similar sources. Essentially, we propose a way to
compute the demanded bandwidth to support requirements of
buffer overflow as well as a maximum probabilistic delay for an
aggregate of sources with diverse traffic parameters. The problem
we study in this section can be stated as:

Given a set of sources with mean , standard deviation

σi and Hurst parameter Hi, what is the link capacity needed so that

the maximum queue size will be bounded by qmax with probability

ε?
Assume that we have N independent sources

defined by the following parameters: mean , standard

deviation σi and Hurst parameter Hi for . Let the

aggregate traffic be denoted by . The

envelope process of each source is given by , and the

envelope process of the aggregate traffic is provided by .

We can compute qmax of a queue with heterogeneous sources by

finding  for the envelope process of the aggregate stream.

The mean of the aggregate traffic is given by the sum of
the mean of individual sources. Similarly, since the sources are
independent, the variance of the aggregate traffic is also given by
the sum of the variance of individual sources. Hence, the envelope
process of the aggregate traffic is defined by

By substituting  in equation 4, we have:

 =

 (6)

We can solve equation 10 numerically in order to find

and then substitute  into Equation 5 to compute qmax

Moreover, by combining Equations 4 and 5, we have:

 (7)

By using Equations 6 and 7 we can answer the
fundamental question posed in the beginning of this section.

For the special case of multiplexing N identical sources,
the envelope process is given by:

insofar as the Hurst parameter is preserved when aggregating N
identical sources.

In this case Equation 6 is, reduced to:
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ĉ

ĉ ĉ
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ÂH t( ) Nat Nkσt
H

+=



Using the previous approach, we can find  and qmax:

 +

where and  corresponds to a queueing system fed by just

one source.

5. A Greedy Policy for Connection Admission
Management

Whenever a request for connection establishment arrives,
the connection admission controller needs to check if it will be
possible to support required QoS, as well as to continue to provide
QoS to the existing connection. In order to maximize the revenue,
the connection admission controller may collect requests during
small time windows, to decide to which request admission should
be granted.

In this section, we focus on connection admission
management subject to revenue maximization. In our study, we
use a common function which takes into account the traffic volume
and the duration of a connection. The used revenue function is
Revenue = aT + bV, where T is time duration of a connection and
V is the traffic volume [17].

One simple approach for connection admission
management is to use a greedy policy which accepts connections
according to the decreasing order of revenue. This is a simple
policy which leads to fast implementation. However, this simple
policy may not maximize the total revenue, since a set of
connections, each with low revenue, may give a higher total
revenue, and consume the same network resources as a single
connection with a high revenue. In other words, we need to find a
combination of connections that gives the highest revenue subject
to available network resources. This is a classic knapsack problem
where the knapsack is the available network resource, and the size
of each object is a connection network resource demand
(bandwidth). This knapsack problem can be state as:

 (8)

where: Ri - connection i revenue;
Hi - connection i Hurst parameter;

- connection i mean arrival rate;
σi - connection i standard deviation;
t* - Maximum Time-Scale (MaxTS);
γ - is the network resource already allocated to existing connec-
tions, which is given by:

Equation 8 as well as γ are derived from Equations 6 and 7
and express the resources requirements of a set of connections,
subject to the required QoS.

To verify the extend to which the simple greedy policy
leads to the same result of an exact approach we ran extensive
simulations using video traces. Figures 1 and 2 show typical
findings. In the numerical examples, we used traces with the
following traffic parameters:

Note that the mean arrival rate are normalized to the
channel capacity. The mean connection duration varies between
20 and 500 seconds, and the buffer size is 1000 ATM cells.

In Figure 1, we show the total revenue as a function of the
mean connection inter arrival time. The total revenue is computed
by adding the revenue of all accepted connections during the
simulation experiment. The exact value of the revenue is
immaterial in the sense that it changes according to the choice of a
and b. The lowest the interarrival time, the higher the arrival rate
is, and consequently the higher the load. Note that for moderate to
high loads the revenue produced by the greedy policy is the same
revenue produced by the Knapsack problem. Under low load
conditions, this trend cannot be observed.
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Table 1: Traffic parameters of video streams.

σ H

A 0.16 1.01 0.67

B 0.12 1.12 0.78

C 0.2 0.9 0.85

D 0.22 0.84 0.91
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In Figure 2, we show the total revenue as a function of the
mean connection duration, for a normalized utilization of 0.7. We
can see that the greedy policy gives the same revenue than the
knapsack problem irrespective of the video duration (for moderate
and high loads).

6. Conclusions
In video streams, there are the so called long-range

dependencies. Such dependencies may cause massive cell loss in
ATM multiplexers. Therefore, it is of paramount importance to
adopt effective connection admission procedures. In this paper, we
introduced a simple policy which can be used for fast connection
admission management. This policy accepts connections
according to their decreasing order of revenue. We showed that it
produces the same revenue, for moderate to high loads, asa policy
based on the Knapsack problem which is target to revenue
maximization.
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Figure 1: Revenue x Average call Interarrival Time

Figure 2: Revenue x Average Call Duration
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