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Abstract

We propose an e�cient soft-decision decoding algo-

rithm for Reed-Solomon codes, called symbol sub-

stitution decoding (SSD), that supplies the alge-

braic decoder with a set of candidate sequences.

The algebraic decoder generates a set of candidate

codewords and the most likely codeword is cho-

sen as the transmitted codeword. SSD outperforms

successive erasures decoding (SED) and generalized

minimum distance decoding (GMD). SSD can ap-

proach the performance of maximum-likelihood de-

coding (MLD) when the number of candidate se-

quences increases.

1 Introduction

The central problem with soft-decision for Reed-

Solomon at the symbol level is to �nd an e�cient

technique that can generate a set of candidate code-

words that will contain the codeword that is most

likely with high probability.

In this paper, we develop an e�cient soft-decision

Reed-Solomon decoding algorithm, called symbol

substitution decoding (SSD), that supplies the al-

gebraic decoder with a set of candidate sequences.

The algebraic decoder generates a set of candidate

codewords and the most likely codeword among

those is chosen as the transmitted codeword [1].

In Section 2, we intend to introduce our com-

munication system model and the algorithm. In

Section 3, SSD associated with Bounded Minimum

Distance Decoding is shown. In Section 4, we intend

to discuss the algorithm complexity. In Section 5,

the simulation results are shown and Section 6 is an

conclusion.

2 Communication System

Model and the Algorithm

The system block diagram is shown in Fig. 1.

Figure 1: Communication System Model.

A sequence ~m = (mj) of k message symbols,

j = 0; 1; � � � ; k � 1, mj 2 GF(2l), is encoded into

a block of n = 2l � 1 RS code symbols ~c = (cj),
j = 0; 1; � � � ; n�1, cj 2 GF(2l), by a (n,k) RS code.
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The index j is the position of symbol cj in the code-
word and l is the number of bits per symbol.
Each code symbol cj is expanded into its rep-

resentation in GF(2), generating the sequence of

n � l binary digits bq , bq 2 f0; 1g, where q =

0; 1; : : : ; (n � l) � 1. The index q = (l � j) + f ,
where f = 0; 1; � � � ; l � 1, denotes the position of

a binary digit within one RS codeword in GF(2)

representation and j = 0; 1; � � � ; n � 1 denotes the

position of symbol cj in the codeword in GF(2l)

representation. These binary digits bq are fed into

a BPSK modulator generating an antipodal signal

xq =
p
Es(1� 2bq), xq 2 f�

p
Es;

p
Esg � IR. Es is

the energy per digit of the signal.

In the channel, the signal xq is corrupted by ad-

ditive noise zq and is received as yq = xq+zq, where
the components of zq are statistically independent

Gaussian random variables with mean � = 0 and

variance �2 = N0=2.
The Gaussian channel output ~y is the input to the

demodulator-detector, which produces as output

the matrix W = (wij), wij 2 IR, i = 0; 1; � � � ; 2l � 1

and j = 0; 1; � � � ; n � 1. W is the matrix of relia-

bility values which provides likelihood information

wij = � ln p(havijhyqi), where havi, v = (l � i) + f ,
f = 0; 1; � � � ; l � 1, i = 0; 1; � � � ; 2l � 1, is obtained

by the expantion of all GF(2l) symbols into their

GF(2) representation and converted with the help

of a linear mapping to a real number 1 or -1. The

following convention is adopted: the 1 2 GF(2) cor-

responds to �1 2 IR and the 0 2 GF(2) corresponds

to 1 2 IR. The index i denotes the elements of

GF(2l) (see Wicker [6]). p(havijhyqi) is the con-

ditional probability of the sequence havi given the

occurrence of the sequence hyqi and is calculated

symbol-by-symbol as [2]

p(havijhyqi) =
l�1Y

f=0

1

1 + e
�2a

v=(l�i)+f �yq=(l�j)+f

�2

; (1)

where the variance �2 = N0=2.
The value wij is known as the soft weight of the

received sequence hyqi with respect to the �eld ele-

ment havi [3, 4, 5]. A large value of wij corresponds

to a symbol havi with a smaller likelihood of be-

ing the transmitted symbol. On the other hand, a

small value of wij corresponds to symbol havi be-
ing the transmitted symbol with higher likelihood.

The minimum value per column of W corresponds

to the hard-decision symbol.

The matrix of reliability values W is the input of

the block candidate sequences generator, which pro-

duces a set of vectors called candidate sequences,

denoted as ~r(c) = (r
(c)
j ), c = 0; 1; � � � ; cmax � 1;

j = 0; 1; � � � ; n � 1; r
(c)
j 2 GF(2l). cmax is chosen

as a power of 2 in order to use all possible com-

binations of a number p of unreliable positions in

the codeword. One of the vectors is the sequence

~r(0) = (r
(0)
j ), j = 0; 1; � � � ; n � 1; r

(0)
j 2 GF(2l),

which is the hard-decision sequence. Further candi-

dates sequences are assembled by substituting the

p least reliable symbols of ~r(0) as follows.

~r(1) is assembled by excluding the least reliable

symbol of ~r(0), also called generator sequence, and

including in this position the second most reliable

symbol (or the second smallest value) of the respec-

tive column of W.

~r(2) is assembled by excluding the second least

reliable symbol of ~r(0) and including in this position
the second most reliable symbol of the respective

column of W.

~r(3) is assembled by excluding both the two least

reliable symbols of ~r0 and including in these posi-

tions the second most reliable symbols of the re-

spective columns of W.

~r(4); ~r(5); � � � ; ~r(cmax�1) are assembled in a similar

form.

The candidate sequence generator outputs ~r(0)

and ~r(c) are the inputs of the block RS-decoder,

which produces as output a set of vectors called can-

didate codewords ~̂c(c) = (ĉ
(c)
j ), c = 0; 1; � � � ; cmax �

1; j = 0; 1; � � � ; n� 1. The candidate codewords ~̂c(c)

and the matrix of reliability values W = (wij) are

the inputs of the codeword selection producing a �-

nal estimate codeword ~̂c as output. The matrix of

reliability values W is used to calculate the reliabil-

ity z(c) of each estimate codeword ~̂c(c) as

z(c) =

n�1X

j=0

wij ;

where i = ĉ
(c)
j . The estimate codeword with mini-

mum z(c) is chosen as the �nal estimate codeword.

When the decoder does not �nd a codeword, i.e., a

decoding failure, the hard-decision sequence ~r(0) is
the �nal output. We call this strategy scheme 1.
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3 Symbol Substitution De-

coding Associated with

Bounded Minimum Dis-

tance Decoding

For RS-codes with code length 63 or larger, a sim-

pli�cation is possible without loss in performance

compared to scheme 1. Begin the decoding algo-

rithm by decoding the hard-decision sequence ~r(0)

using an errors-only decoding algorithm. If a code-

word is found take the result to be the �nal estimate

codeword ~̂c and the process is complete.

If the decoding attempt fails to �nd a code-

word, compute the matrix of reliability values, gen-

erate the set of candidate sequences, decode using

an errors-only decoding algorithm and choose the

codeword with minimum z(c).
If again no codeword results, the sequence ~r(0) is

delivered.

For RS-codes with code length 31 or smaller this

simpli�cation induces a loss in performance, com-

pared to scheme 1, because the probability of de-

coder error is high [7].

We call this strategy scheme 2.

4 Symbol Substitution Decod-

ing Complexity

The decoding complexity of SSD is determined by

3 factors:

1. The complexity to calculate the reliability ma-

trix W .

2. The complexity of the selection algorithm in

the candidate sequences generator block.

3. The complexity of the RS decoder.

The complexity of calculating the reliability ma-

trix W is given by the number of operations with

real numbers in the equation 1.

The complexity of the selection algorithm de-

pends on the basic algorithm of selecting the Mth

largest elements in a vector. The fastest general

algorithm for this basic task uses the partitioning

method. Selecting a random partition element, one

marches through the vector, forcing smaller ele-

ments to the left, larger elements to the right. For

selection, it can be ignored a subset and attend only

to the one that contains the desired Mth element.

Selection by partitioning counts scales as N, where

N is the vector length. In this case, N is equal to the

number of elements in GF(2l). For more informa-

tion about this selection algorithm see Press [10].

It is possible to show that every linear code can

be decoded by a machine with computational com-

plexity proportional to n2, where n is the codeword

length [11]. Therefore, it is possible to attain an RS-

decoder complexity proportional to n2. In this case,
the SSD complexity is proportional to the number

of candidate sequences times n2. This is an upper

estimate.

Justesen [12] proposes that certain q-ary RS

codes can be decoded by an algorithm requiring

only q log2 q in terms of additions and multiplica-

tions in GF(q). Therefore, a realistic estimation of

the RS decoding process in SSD is the number of

candidate sequences times q log2 q.

5 Simulation Results

In this section computer simulations is used in or-

der to compare the performance of the SSD with

scheme 1 and scheme 2 for binary antipodal signals

(binary phase-shift keying, BPSK) over the Gaus-

sian channel. In these �gures the acronyms have

the following meaning. HDD means hard-decision

decoding; Scheme 1 - XC means symbol substitu-

tion decoding with scheme 1 and with X candidates,

where X can be 4, 8, 16, 32, 64, 128, 256, 512, 1024

and 2048; Scheme 2 - XC means symbol substitu-

tion decoding with scheme 2 and with X candidates;

TMLD means trellis maximum-likelihood decoding.

In order to give an idea of the accuracy of this

simulation, we would like to point out that 106 code-

words could be transmitted. The simulation �nishes

if the decoding process yields 103 word errors or if

all codewords were transmitted.

Fig. 2 shows that a bit error rate (BER) of 10�5,

SSD with 128 candidate sequences applied to a (7,3)

RS code o�ers a 2.5 dB improvement in power e�-

ciency compared to HDD. Another SSD character-

istic that can be observed, is that the gain increases

with the number of candidate sequences.

In Fig. 3, scheme 1 for a (15,11) RS code is com-

pared to the trellis maximum-likelihood decoding

(TMLD) algorithm proposed by Vucetic and Vuck-

ovic [13]. This TMLD algorithm is implemented by

searching a trellis. The main idea lies in sorting

of all possible n-tuples from GF(q) with respect to

their distances from the received sequence. Start-
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Figure 2: SSD, scheme 1, applied to a (7,3) RS code.

ing from the closest one, one by one is tested, while

increasing the distance from the received sequence

successively, until the �rst codeword is found [13].

The non-binary error patterns, which belong to the

same level, are represented by a trellis. The trel-

lises can be constructed prior to the decoding pro-

cess. The redecoding process starts by searching the

paths in the trellis for the lowest level, and stops

when added to the received sequence results in a

codeword [13]. From this �gure, it can be concluded

that SSD can achieve maximum-likelihood decod-

ing (MLD) if the number of candidate sequences

increases.
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Figure 3: Comparison between SSD and MLD when

applied to a (15,11) RS code.

Fig. 4 shows the results of scheme 1 with a (31,23)

RS code. Note that the gain at BER = 10�5 and

scheme 1 with 128 candidate sequences is approxi-

mately 1.4 dB. In comparison with scheme 1 applied

to a (7,3) RS code the gain decreased. Hence, the

gain decreases with codeword length for an equal

number of candidate sequences.

3 3.5 4 4.5 5 5.5 6 6.5 7
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

RS(31,23) − 2PSK − AWGN − SSD

10log
10

(E
b
/N

o
) in [dB]

B
it 

E
rr

or
 R

at
e

HDD              
Scheme 1 − 4C    
Scheme 1 − 8C    
Scheme 1 − 16C   
Scheme 1 − 32C   
Scheme 1 − 64C   
Scheme 1 − 128C  
Scheme 1 − 256C  

Figure 4: SSD, scheme 1, applied to a (31,23) RS

code.

Fig. 5 shows that SSD is superior to SED [9] with

maximal 4 and 8 erasures and GMD decoding, while

the number of hard-decision decoding procedures

remains constant.
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Figure 5: Comparison between SED, GMD, SSD

and scheme 1, when applied to a (31,23) RS code.

Finally, in Fig. 6 the performance of scheme 2

when applied to a (255,223) RS code is shown.

Results for SSD associated with errors-and-

erasures decoding and SSD associated with SED

can be found in [1].



A New Soft Decision Decoding Algorithm for Reed-Solomon Codes

4.5 5 5.5 6 6.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

RS(255,223) − 2PSK − AWGN − SSD

10log
10

(E
b
/N

o
) in [dB]

B
it 

E
rr

or
 R

at
e

HDD               
Scheme 2 − 64C    
Scheme 2 − 512C   
Scheme 2 − 1024C  
Scheme 2 − 2048C  

Figure 6: SSD, scheme 2, applied to a (255,223) RS

Code.

6 Conclusions

The new soft decision algorithm proposed in this

paper, called symbol substitution decoding (SSD),

belongs to the class of decoding methods in which

an algebraic decoder is used to generate a number of

candidate codewords. The innovation is that SSD

supplies the algebraic decoder with a set of can-

didate sequences generated so that the information

contained in the received sequence is processed with

more e�ciency.

SSD has the following main characteristics:

� The gain increases with the number of candi-

date sequences.

� SSD can achieve MLD if the number of candi-

date sequences increases.

� The gain decreases with code length for equal

number of candidate sequences.

SSD outperforms SED [9] and GMD [8] by far.

The decoding complexity of SSD is governed by

the complexity of calculating the reliability matrix

W , by the complexity of the selection algorithm in

the candidate sequences generator block, which is

proportional to the number of candidate sequences

times q, where q is the number of elements in GF;

and by the complexity of the RS-decoder block,

which is proportional to the number of candidate

sequence times q log2 q.
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