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Abstract- A fuzzy algorithm is used as control surface for
the buffer occupancy of a MPEG2 (Moving Picture Experts
Group) video encoder. Based on scene features, a
supervised algorithm trains a Radial Basis Function  Neural
Network (RBFNN). The so trained RBFNN acts as a
predictor for the number of bits generated in a frame, so
that the predicted buffer occupancy can be determined. The
predicted and present buffer occupancies are applied to the
fuzzy-generated control surface which yields the encoder
quantizer step parameter. We compare the obtained results
with the Test Model 5 standard rate control scheme.

1. Introduction

The MPEG-2 standard is a widely accepted
video-compression technique that applies no standardization
to the coding process, allowing the proposal of different
approaches for the encoders. The MPEG coded data can be
transmitted through constant bit rate (CBR) channels or
through variable bit rate (VBR) channels. In the CBR case,
due to the highly time-varying complexity of the video
sequences, it is imperative the use of a buffer in order to
properly stabilize the output rate to the channel [6].  As an
example, perhaps one of the most demanding CBR buffer
control tasks occurs in the transmission of medical images,
where the requirements for image quality are severe and
channel rates as low as 2 Mbps are not uncommon  [8].

In a previous work [1] the authors developed a
non-linear predictive video bit rate controller that uses a
supervised RBFNN approach. The RBFNN training is
carried out by updating the output neuron synapse weights,
as well as the Gaussian centers, by means of the Stochastic
Gradient (SG) algorithm [4]. The SG algorithm uses an error
input derived from the desired output, which characterizes it
as a supervised training process. The rate prediction at the
RBFNN output is then applied to a non-linear mapping [2],

which yields the encoder quantizer step (mquant parameter
[3]).

In this work we present a fuzzy approach to
determine the encoder quantizer step. The fuzzy controller
implements a family of piecewise lines, each one with a
different slope. The line set is conceived to properly control
the buffer occupancy for time-varying complexity video
signals. The obtained results with such simple rate control
technique are similar to those previously obtained by the
authors using the referred non-linear mapping technique [1].
In comparison with the Test Model 5 (TM5) standard rate
control scheme [3],  superior performance was obtained for
the buffer occupancy and signal-to-noise ratio (SNR).

2. RBF Neural Networks

A RBF neural network is a universal approximator
[4]. It consists of an input layer with M nodes, a hidden
layer with K neurons and an output neuron layer. In our
case, since we are interested in estimating just the scene
complexity on a frame by frame basis, the output layer has
only one output neuron, as can be seen in Figure 1 [5].

Figure 1: Radial Basis Function Network.
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The kth  hidden neuron, k=1,…,K, computes the distance

between the center vector M
kt ℜ∈  and the nth input vector

( ) Mnu ℜ∈  presented to the RBF. The resulting distance is

utilized as argument to a Gaussian function ϕ with variance
σk

2(n)  as given by
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The output of the kth hidden neuron is applied to the
output neuron through the weighting synapses wk. The RBF
output y to the input vector u  is given by the weighted sum

of all hidden neurons outputs, according to
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The term ( )2,, kktu σϕ  in equation (2) is formally

defined as the kth Radial Basis Function, which computes the

distance ktuD −=  between the input vector u and the

center vector tk  [4].  Notice that the output of each hidden
neuron is a non-linear function of D. The synapse weight wk

represents the gain of the path which connects the output of
the kth hidden neuron to the output neuron. The constant
term w0 is the bias applied to the RBF.

The RBF training is performed by presenting a set
of training vectors u to the network input. Upon the
presentation of the nth training vector u(n) and the associated
desired output yd(n), the RBF free parameters wk, tk and σk

2

are updated by means of the SG algorithm [4][5], as shown
by
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where e(n)=yd(n)-y(n) is the error associated with the nth

presented training vector u(n) and µσ, µt, µw, are the learning
rates for the Radial Basis Functions variances, for the center
vectors and for the synapse weights, respectively.

As the training proceeds, the instantaneous error is
minimized and the RBF acquires information about the
underlying process associated with the training set.
Specifically, the so trained RBF acts as a natural interpolator
of the underlying process. It is capable to generate an output
y with minimum error (in the mean square sense) for a
presented vector u which is not a training vector but lies in

its neighborhood. In this sense, the RBF is a non-linear
predictor [5].

3. The Fuzzy Predictive Video Bit Rate Controller

Figure 2 shows the block diagram of the fuzzy
neural predictive video CBR controller [1][2][5]. The nth

training vector at the input of the RBF neural network has 9
components: the variances of  Fn, Fn-1 and Fn-2; the variances
of  (Fn- Fn-1),  (Fn-1 - Fn-2) and (Fn-2 - Fn-3); and Tn, Tn-1 and
Tn-2; where Fn is the nth video frame at the encoder input and
Tn is the type of Fn (1 for I-frames, 0 for P-frames and –1 for
B-frames [6]).

The RBF output y(n) is a prediction of the number
of bits that will be stored in the buffer by the end of the nth

frame coding process. The RBF supervised learning via SG
algorithm uses the error e(n) obtained from y(n) and from
the encoder output bits cbf(n) generated after the nth frame
coding.

Figure 2: Fuzzy neural predictive video bit rate controller

Notice that adding y(n) to O(n,j) – the present
buffer occupancy or the occupancy after the jth macroblock
of the nth frame is coded –  and subtracting the mean
bits-per-frame MBF, we obtain Op(n) – the predicted buffer
occupancy. Op(n) is an estimate of the buffer occupancy
after the jth macroblock of the (n+1)th frame is stored in the
buffer [6]. MBF is defined as the ratio of the channel rate
[Mbits/s] to the frame rate [frames/s].

The quantizer step Q or mquant [3] is the main
control parameter for the buffer occupancy. The mquant
control is achieved by means of a fuzzy controller. To
perform the control task, the controller is provided with the
information about the present buffer occupancy O(n,j) and
the predicted buffer occupancy Op(n). Based on this
information it decides which quantizer step (Q (n)) will be
applied to the encoder.

The input fuzzy linguistic variables (O and Op) and
the output fuzzy linguistic variable (Q) assume linguistic



values in the set S={L0, L1, ..., L12}. The set S is in
ascending order, i.e., L0 is associated with the lowest
linguistic value and L12 is associated with the highest
linguistic value. These thirteen linguistic values define the
discrete fuzzy partition of the input and output spaces and
were experimentally determined, according to the nature of
the control problem. Due to the high sensitivity of the
human visual system to image details, we had to use a larger
number of values to create the discrete linguistic variable
spaces than the usual seven or less partitions [7]. The
differential variances between consecutive frames have been
already considered at the RBFNN input. Therefore, the use
of fuzzy linguistic variables that might take into account the
buffer occupancy velocity is a redundant procedure. Figure
3 shows the membership functions of the fuzzy sets O, Op

and Q.  All the values in the universes of discourse O, Op

and Q are normalized to the interval [0,…,1].

Figure 3: Fuzzy sets associated with the present buffer occupancy
O, the predicted buffer occupancy Op, and the quantizer step Q.

A set of fuzzy control rules is derived from a family
of OQ ×  lines parameterized by Op. Each family member is

a pair of connected line segments labeled by the Op value, as
shown in Figure 4.  Each segment in a particular member of
the line family has its own slope (which was experimentally
determined), and an upper and a lower saturation region
limit each family member.

Notice that the higher the predicted occupancy Op,
the higher the slope of each OQ ×  line segment. This aims

to prevent the buffer overflow for the situation of a large
increase in buffer occupancy such as in drastic scene
changes. On the other hand, for an almost empty buffer
prediction (lower Op levels), the OQ×  line segments

present minimum slope, yielding low Q values for a wide
range of all possible O values, which avoids buffer
underflow. The quantizing operation implies that lower
levels for Q results in higher SNR.

The fuzzy control rules derived from Figure 4 are
shown in Table 1. Based on Table 1 we can describe the
rules in a linguistic form, for instance, “if O is L6 and Op is
L6, then Q is L6”. This specific rule has the meaning: If the
present buffer occupancy is at the medium level and the
predicted buffer occupancy is at the medium level, then the
quantizer step will have the medium level value.

In this work we present the results obtained from
this particular set of fuzzy control rules. However, the
implementation of the fuzzy controller allows a great
number of different fuzzy rule sets. Each set of rules
originated from different line families or from any other
family of curves is able to generate new control surfaces for
specific purposes.

Figure 4: Family of OQ ×  lines parameterized by pO .

Table 1: Fuzzy control rules for Q.

To obtain the resulting fuzzy rules we apply the
min t-norm to model the connective and and the Larsen
fuzzy conjunction to model the decision-making logic [7].
To perform the aggregation rule we use the union operator,
modeled by the max s-norm. The center of area method is
applied for defuzzification [7].

4. Experimental Results
In this section we present two examples in order to

compare the performance of the RBF fuzzy predictive video
CBR controller with that of the Test Model 5 (TM5)
heuristic.

In both cases we used standard video sequences, of
size 480720×  pixels, a video input frame rate of 30 frames/s
and an output channel rate of 3.5Mbits/s. The RBF learning
rates were set to: µt=0.15,  µσ=0.5 and µw=0.1. The buffer
size adopted was 2333332 =× MBF  bits, as suggested in the
TM5 [3].



In the first case we used the standard video
sequence Mobile. Figures 5 and 6 show respectively the
SNR and the percent buffer occupancy versus the frame
index obtained for this sequence.

Notice that the nominal buffer occupancy as well as
the buffer occupancy variance attains values substantially
smaller for the fuzzy neural controller than for the TM5
controller. For the fuzzy neural controller, the buffer
occupancy is kept around 50% along almost all coding
process. However, as we can see in Figure 5, the buffer
stabilization does not imply in SNR losses.

Figure 5: SNR [dB] (Mobile sequence).

Figure 6: Percent buffer occupancy for Mobile sequence.

Figures 7 and 8 show respectively the SNR and the
percent buffer occupancy versus the frame index for the
juxtaposed sequences Mobile & Kiel. This sequence is
obtained with the 30 first frames of the Mobile sequence and
the last 30 frames of the Kiel sequence appended to it. The
other fuzzy parameters, the RBF parameters and the video
parameters are all kept the same.

It is important to note that the two sequence
composition introduces a drastic scene change [5]. However,
in despite of the drastic scene change, the fuzzy neural
controller has kept the buffer occupancy in considerable
lower levels, if compared with the TM5 control, for the
same SNR levels.

Figure 7: SNR [dB] (Mobile & Kiel sequence).

Figure 8: Percent buffer occupancy for Mobile & Kiel sequence.

5. Conclusions

A fuzzy technique was proposed in this paper to
perform the buffer rate control of a predictive video CBR
controller for MPEG2 encoders. The fuzzy control was
applied to determine the encoder quantizer step parameter,
as a function of the present and predicted buffer occupancies.

Concerning the buffer occupancy and the SNR, the
results obtained with the proposed technique are similar to
those obtained by the authors with the non-linear mapping
technique described in [1]. If compared with the Test Model
5 rate control standard technique [3], the results obtained are
superior with respect to the nominal buffer occupancy and
the buffer variance, for the same SNR.

The fuzzy techniques applied in this work are quite
simple and make room for the use of more elaborate
techniques, aiming to improve the fuzzy controller
performance. For instance, a controller based on adaptive
fuzzy sets may be derived from this implementation. This
approach improves the controller performance since it can
adapt itself to the video signal statistics.

However, the main contribution of this work is to
make possible the generation of empirically or
experimentally   conceived   control   surfaces,  for   specific



purposes other than the CBR goal. The fuzzy controller
circumvents the need of analytical functions  to describe the
control surface, since any conceivable surface can be
generated by simply changing the set of fuzzy rules.
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