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Abstract: The Bromwich method for solving Maxwell’s
equations is firstly introduced. This allows for establishing
the grounds for reaching solutions in a number of
different coordinate systems. Secondly, the cylindrical
system is put, leading to a pertinent solution for cylindrical
resonators. Next, practical procedures are described for
identifying desired resonant mode and for rejecting the
undesired ones. Finally, a TEp;, resonator is
accomplished and the appropriate results are described.

Key terms: Bromwich, Maxwell equations, coordinate
systems, cylindrical resonators, mode rejection.

1. INTRODUCTION

Stable microwave oscillators are required in
Communications Systems for providing carrier gene-
ration. Microwave resonator with an unloaded quality
factor [1], Qp, comparable with that one of a RF
crystal [2], is still an open issue. The usual practical
solution for generating a stable microwave frequency
range carrier is to lock a microwave oscillator (slave)
to a stable RF crystal oscillator (master), by means of
a PLL [3,4].

However, it is mandatory that the slave microwave
oscillator should be relatively stable, otherwise the
lock operation will not be feasible. The more stable
the microwave oscillator is, the less stringent the
locking operation requirements shall be [5].

Although the dielectric resonator [1] is well
accepted, when miniaturization is a paramount, the
metallic-wall hollow cylindrical cavity resonator is
able to reach a higher quality factor [6].

Here, a cylindrical cavity will be designed to operate
in 8.3 GHz. In Section II, the Bromwich method for
solving Maxwell’s equations will be presented and the
reason why this specific method is used will be
discussed. In Section III, the theoretical solution for
the cylindrical cavity, together with its prospective
physical dimensions, will be obtained. In Section IV,
practical considerations concerning undesirable mode
rejection will be presented. In Section V,
measurements are carried out and the results obtained
are discussed.

II. BROMWICH METHOD FOR MAXWELL’S EQUATIONS

Consider a three-dimension generic curvilinear
coordinate system, where the length element, ds, is
related to the three generic coordinates u, v and w by
a relation such as:

ds? = e,2 du® + e, dv? + e3” dw? )]

where e, ¢, and e; are the local unitary length
elements, which are related to the conventional
rectangular system coordinates (X, y and z) by:
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Now, let the Maxwell’s equations be written in an
homogeneous medium, free of charges, with a
dielectric constant € and a magnetic permittivity p.:
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A. Maxwell’s Equations in Curvilinear System:
It is then possible to rewrite the above equations in a
generic curvilinear coordinate system, as given by (1)
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It is well known that the most general solution
associated with the above (4), (5), (6) and (7) equation
set is a superposition of two particular solutions. The
first one is obtained with H=0, called as TM. The
second, with E=0 is the TE

B. Solution by the Bromwich’s Method

The Bromwich method does not apply to all
curvilinear systems. It is a necessity that the local
length unitary element e; must be a function - only -
of the coordinate that is associated to it: u.
Additionally, the two others should be independent of
u. All other permutations must also be fulfilled.
Consequently, it is possible to do:

e; = 1; and (e, / e3) is independent of u (8a,b)
B.1. Transversal Magnetic Solution
By setting H; = 0, equation (4a) yields:
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in the above equation, let P be an arbitrary auxiliary
function such that its derivatives — with respect to v
and w — are respectively:
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By substituting E, and E; as from (10a, b) in (4b)
and (4c¢), and also taking into account (8a,b), it will be
obtained:

(10a, b)
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The components of E and H W111 be now obtained.
Let be put: P = (0U/0u), with U to be defined ahead.
Since H;=0, E, and E; are obtained as follows:
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For obtaining H, and Hj, it must be first considered:
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Next, from (11), H, and Hj; are readily obtained:
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By using (12b) and (12¢) in (4b), the last

component, E;, will result:
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In this way all the six components have been
obtained. However, all of them are a function of U,
which by its turn has been defined from P, with this
last being an arbitrary function. Therefore, still is
necessary to properly define the function U. For doing
so, a second expression for E; must be obtained. By
using (12¢) and (12d) in (5a), another expression for
E; becomes apparent:
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Comparison of (12¢) and (13) defines U:
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Therefore, U 1is the function that solves the
differential equation (14).

B.2. Transversal Electric Solution

By setting E; = 0, and using a procedure similar to
the one used for TM, the E and H components are
easily obtained:
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Again, the U function is defined exactly as in (14).
B.3. Simplification for Sinusoidal Field

Frequently, the electromagnetic field is a sinusoidal
time function. In this case, (0 /0t) may be substituted
by jkv,, where k is a propagation constant — which
will be discussed ahead — and v, is the phase velocity.
Additionally, f is the electromagnetic field frequency
and the following relations apply:

v - 1 : k_27cf
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If the previous paragraph derivations were done
again considering the field as a sinusoidal function of
time, it would be equivalent to write the U(u,v,w,t)
jkv_t
function as follows: U=¢ p U(u,v,w).

The field components, according to the TM and TE
solutions, and the U function would be as follows
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considering the factor e as an implicit one:
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B.3.3. — U Function
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The equation (18) is called as the Bromwich
equation.

C. Applicability of the Method

Due to the restriction described in (8), the
Bromwich method can not be used in all curvilinear
coordinate systems. Only systems whose coordinate
relationships are such that comply with (8) are to be
used. A few examples are given now:

(a) — rectangular; (b) — cylindrical; (c) — spherical;
(d) - elliptic cylinder, (e) - parabolic -cylinder;
and (f) — bi-axial cylinder.

It is then observed that the Bromwich method leads
to Maxwell’s equation solutions that may be used in a
vast majority of problems normally occurring in the
Classical Electromagnetism.

III. CYLINDRICAL CAVITY APPLICATION

For solving a problem with cylindrical symmetry, it
is advised to use a cylindrical coordinate system. Let
be a hollow cylindrical cavity with perfect conductor
walls. The height is h and the radius is r. The z-axis is
coaxial with the cylinder as shown in Fig.1.

ZA
U=Z  Fig. 1 — Cylindrical
H— V=p coordinates are used to
p W=¢  represent a cylindrical
cavity with metallic
Y walls.

The bottom and top covers are located in z = 0 and
in z = h, respectively. The entire lateral surface is
located at p =r1. By Fig. 1, e; = e, =1 and e; = p, with
u=1z v=pand w = ¢. The Bromwich function is

then:
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Observe the simplicity of the Bromwich method.
Since an expression for U, in general curvilinear
coordinates is already available, as (18), it is just a
matter of rewriting it in the cylindrical system, for
obtaining (19). Next, U is written in terms of Laplace
products [7], yielding:
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=808 1¢) #S9S kapt

J
U =gen sen 9Z *y n (ap) (20

where 2> = kK —

1
ahead) and v, = ——.
VHE

As the cylinder is empty and the U function assumes
finite values for the axis, p = 0, then the Bessel
function of second kind, Y, should be rejected. As the
field pattern is such that presents a revolving
symmetry and repeats itself at each 2w radial rotation,
then n must be an integer. Therefore (20) simplifies
to:

q* (q definition will be presented
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The previously exposed equation sets (16) and (17),
while using U as (21) will give the TM and TE
solutions. For doing so, the boundary conditions are
first introduced:

(a) -forz=0— (E,=E;=0)
(b) -forp=r— (E,=E;=0)
(¢c) -forz=h— (E,=E;=0)
For TM: U =1J,(ap) e £3(n¢) e cos(qz)
For TE: U =1, (ap) e &5(n¢) e sen(qz)
with:
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Observe that q has been defined as related to number
of oscillations occurring along the cylinder axis.
Additionally, let p;, and p;, be the i-th non-zero roots
of J.(ap) and of J*(ap), respectively.
The six field-components will now be obtained, using

as parameters the integers — n, i and m — which
designate the different oscillatory modes.
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For the vacuum the above field frequency is:
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The lowest frequency is the one for m = 0 and for
the first non-zero root of J;,. This last root occurs for i
=1 and n = 0. In this case the oscillation frequency is
not dependent upon the height of the cylinder, as
below:
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Now, the lowest frequency does not occur for m=0,
as for m=0, the six field components are zero. Rather,
the lowest frequency occurs for m=1. Another
interesting point is that the first non-zero root of J'g is
3,8317, which is greater than the first non-zero root of
J’y, which is 1.8412. Therefore, the lowest frequency
occurs forn=1,i=1, m=1.

IV. DESIGNING A TEg;, CAVITY

If a cavity is used for an oscillator application, then
its unloaded quality factor, Qq, should be as high as

possible. For a given metallic cavity material,
different quality factors are obtained, according to the
different chosen mode [6]. The highest quality factors
are obtained with the TE;,, modes. Usually, the TEq;
mode is the one chosen, although, the TE,, presents a
higher Qq. There are two reason for preferring TE;
with respect to TEq,: (a) - the cavity results smaller,
roughly with reduction of a third in the volume; (b) —
the operational range of the TE(, occurs in a region
far less populated by extranecous modes than the
TEg1».

However, in this work, the TE;, mode will be used,
in order to demonstrate an expertise in rejecting
undesired modes. The onus will be a larger size
cavity, while the bonus will be a higher quality factor,
by a ratio of approximately 25%, with respect to
TEo11.

Additionally, Collin [6] has also determined the
optimum ratio diameter/height for maximizing the
quality factor, according to the desired mode. For both
TEy;; and TE, this ratio is 1.1. By using (25) the
TE,, cavity dimensions for 8.3 GHz are:

Radius r =29.7 mm ; Height h =54.0 mm

By using (23) and (25), it is seen that within a
suitable operational frequency range, in the vicinity of
8.3 GHz, between 7.7 and 8.9 GHz, the following
modes may generated and deserve a careful analysis:

(i) - TMyyp at 8256 MHz
(ii) - TMy;, at 8295 MHz

o TE ¢, at 8295 MHz (desired)
(iii) - TM,y; at 8711 MHz
(iv) - TE;), at 8745 MHz
(v) - TE 5 at 8843 MHz
(vi) - TMyy at 8874 MHz

There are six modes to be eliminated. Although the
frequency of the TM;, mode occurs (theoretically) in
the same as TEgy;,, both have different Q’s. In
practice, the loading effect will displace one from the
other. An oscillator may then keep jumping between
these two frequencies. Observe that closing a hollow
metallic cylindrical pipe body with two circular
covers usually makes a cylindrical resonant cavity.
The precious point is that a bad electrical contact may
be deliberately done while closing the cavity. For
instance: the touching surfaces may be covered with
an insulating varnish. By doing so, the modes TE;
and TM,;, will not be supported, as they have strong
currents at the junction of the cover with the lateral
cylinder surface. However, for the TEy;, this current
is zero (H, = 0 and E, = 0, for p =r).

Additionally, the cavity will operate in a
transmission mode, by using two connectors placed
on the same cover. The connectors are located in two



radii with an angle of ¢=135° between them. The
excitation of the TEy;, will not be affected, as with
n=0, there is no dependence upon ¢. However, all
modes TXj;,, will be rejected. This is easily seen from
the equation (22f) and from (24f), which describe the
H, field component for TM and TE modes,
respectively.

Concerning the cavity excitation through one of the
covers, it must be observed that on the covers one has
Ey = 0 and H, = 0. Therefore, it was decided to use a
magnetic excitation over H,, which incidentally,
reaches its maximum value on the covers, producing
circumferential currents. These are such that the
maximum intensity current circumferences — on the
covers - are located at the coordinate p = 0.48 r. This
fact provides for the information for the best location
for placing the connectors: yielding maximum
excitation and maximum reception.

Additionally, by placing input and output
connectors at p = 0.48 r some other modes that
possess Hy nodal circles at (or near) this coordinate
are eliminated (or substantially attenuated).

In this way, simple methods — based on field
configurations — will enhance the desired mode and
eliminate (or at least attenuate) undesired ones.

V. PRACTICAL RESULTS

Two SMA connectors were next introduced in the
top cavity cover, at the coordinate p = 0.48 r, and,
their radii were doing an angle of 135°. A short
circular loop was responsible for magnetic excitation.
Empirically, the loop size was adjusted until the
insertion loss at the TE;, peak reached — 3 dB.

This — 3 dB value was chosen as it is was
satisfactory practical value for exacting counter-
balancing the gain of a typical active element (for
instance, an AsGa FET) at 8.3 GHz, operating at large

signal condition. Fig. 2 depicts a possible prospective
arrangement of the present described cavity working
together with an active device for an oscillator
implementation.

Ad

Cc 1 L —/ R

Equivalent Circuit of a
Transmission Cavity

Fig. 2 — Practical arrangement for implementing an
oscillator, using a transmission mode cavity.

In Fig. 2, it is seen a loop containing an amplifier, a
phase-shift adjustment and an equivalent RLC circuit

The amplifier provides for gain, in order to
compensate the losses of the cavity and some small
losses of the phase-shifter.

The phase-shifter provides for a phase adjustment
in order to have a positive feedback at the desired
frequency.

The transmission mode cavity is equivalent to a
series RLC circuit. As the input and output
impedances of the other components are 50 ohm and
the cavity has a 3 dB insertion loss, then the R value
is 100 ohm.

Finally, the cavity was assembled, as described,
with a coat of insulating varnish between the covers
and the lateral body. The cavity has its insertion loss
measured, from 7.7 to 8.9 GHz. The obtained results
are shown in Fig. 3.

Cavity TEO012

Loss (dB)

8.30

Freq (GHz)
Fig. 3 — Obtained measured results for the insertion loss of a TE;, transmission mode cavity



The first observation, in Fig. 3, is a pronounced
peak at 8.3 GHz, resulting from the transmission of
the TE;, mode.

Next, it is seen that there several other peaks,
however, they are — at least — 20 dB below the TE,
one. Therefore, the simple countermeasure methods
that have been used to combat extraneous modes have
been successful, as a 20-dB rejection is a figure well
below the gain of Fig. 2 amplifier.

By using a stable synthesized generator together
with a stable digital frequency meter, it was possible
to measure the bandwidth of the TE,; line at the 3 dB
below the peak level. Although noisy, the measured
bandwidth was estimated as 600 kHz. The loaded
quality factor, Qy, is then obtained:

9
L= &103 = 13.8x10°
600x10
However, the unloaded quality factor, Qo, as
R =100 ohm (- 3dB insertion loss), is twice the last
figure, i.e.:

Qo = 28x10°

This value is reasonably competitive with the Qg of
a crystal, and almost an entire order of magnitude
greater than the figure obtained with a dielectric
resonator, at the same frequency.

Still, for comparison, the theoretical value of the
same cavity, if coated with polished silver, would be
Qo(Ag) = 38x10° [6], while for polished aluminum it
would be Qo(Al) = 31x10° [8]. Here, a lower value
has been obtained as a very elementary polishing has
been performed.

VI. DISCUSSION AND CONCLUSIONS

In this work a metallic resonant cavity, operating at
the TE(;, mode in 8.3 GHz has been implemented, for
stable microwave carrier generation.

The work has started by demonstrating that the
Bromwich method to solve Maxwell’s equations is a
very suitable one. It may be applied in the most usual
coordinate systems occurring in the Classical Electro-
magnetism problems. It has also been shown that,
once Maxwell’s equations are written and solved in a
generic curvilinear coordinate system, the trans-
position to a specific coordinate system is quite
straightforward. In this present work, the transposition
to cylindrical coordinate system has been performed.

Once Maxwell’s equations have been written in the
cylindrical coordinate system, the desired cavity
design was immediately obtained. Additionally,
pattern field observation of several other modes has
led to countermeasures in order to avoid (or at least to
attenuate) extraneous modes occurring in the vicinity
of the desired one.

Strictly speaking, the cavity has resonated — in the
TEy;; mode - at 8.295 GHz, only 0.06% apart from
the desired value. The wuse of TEj, mode,
alternatively to the usual TEg; has led to a quality
factor 25% higher. Although a TE;, cavity works in a
region far more populated by extraneous modes than a
TEy;, all undesirable modes have been attenuated by
20 dB, or more.

This cavity is a worthy piece of hardware for
implementing stable microwave carrier generator,
neither needing complex and costly multiplier chains
nor sophisticated PLL loops. As shown in Fig. 2, the
carrier generator is extremely simple. Additionally,
the carrier generator will be temperature-stable if the
cavity temperature has some sort of stabilization

Concluding, this work has two relevant

contributions.

The first is an academic one, by bringing into focus
the Bromwich method for solving Maxwell’s
equations and pointing out its advantages and
simplicity. Unfortunately, the Bromwich method has
been somewhat left aside among numerous
researchers; exception done with those from French
School [7].

The second is a practical one, by offering a
successful design of a risky TEy, cavity (alternatively
to a safe TEq;;), and by reaching satisfactory and
useful results for a practical utilization in stable
microwave carrier generation.
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