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ABSTRACT

We introduce in this paper an optimal Bayesian algo-

rithm for integrated detection and tracking of Gaussian

targets that move randomly in cluttered environments.

We model the background clutter as a noncausal Gauss-

Markov random process and incorporate the statistical

descriptions of the clutter, target signature, and target

motion into the design of the detector/tracker. The op-

timal detection performance is quanti�ed using Monte

Carlo simulations.

1. INTRODUCTION

The problem we consider in this paper is to detect and

track extended random signature targets that move ran-

domly in heavily cluttered environments. The proposed

solution is an optimal multiframe Bayesian algorithm

that uses as data a sequence of sensor images and in-

corporates the statistical models for clutter, target sig-

nature and target motion. At each sensor scan, the al-

gorithm decides whether targets are present or not and

estimates the position of the targets that are declared

present in the surveillance space. Detection and local-

ization decisions are based on both current and previous

sensor measurements using a recursive spatio-temporal

data processing.

This paper extends to targets with random signa-

tures the algorithm we had previously introduced for

deterministic signature targets [1, 2, 3]. Section 2 re-

views brie
y the models for target signature, motion

and clutter that underly our integrated approach to de-

tection and tracking. Section 3 develops the optimal

Bayes detector/tracker. In section 4, we detail the im-

plementation of the algorithm in the particular case of

spatially correlated Gaussian targets. We quantify the

detection performance of the proposed Bayesian algo-

rithm in section 5 using large-scale Monte Carlo simu-

lations and compare it to the performance of the con-

ventional single frame Neyman-Pearson detector. The
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results show that, in scenarios of dim targets/heavy clu-

uter, the multiframe Bayes detector signi�cantly out-

performs the traditional single frame schemes. Finally,

section 6 summarizes the main contributions of the pa-

per.

2. THE MODEL

We review brie
y in this section the models for tar-

get signature, target motion, and clutter statistics. For

simplicity, we restrict ourselves to a scenario with one-

dimensional (1D) surveillance spaces (e.g., radial mo-

tion with constant azimuth and elevation) and a single

target per sensor scan with purely translational motion.

The extension of the models to two-dimensional (2D)

environments (targets that move randomly in a plane)

is detailed in [1, 5].

Sensor Model

The sensor scans a bounded surveillance region which,

given the sensor's �nite resolution, is discretized by a

uniform �nite discrete lattice. Assuming a 1D surveil-

lance region, the sensor lattice is an interval of the real

line given by L = fl: 1 � l � Lg where L is the number

of resolution cells.

We introduce the random variable zn that represents

the target centroid position (range) in the sensor lattice

during the nth sensor scan. In order to account for the

situations when targets move in and out of the sensor

range and in order to account for the possibility of ab-

sence of target, we de�ne zn on the centroid lattice

L = f�ls + 1 � l � L+ lig (1)

where (li + ls + 1) is the maximum length of the 1D

clutter free image of a possible target. From (1), we see

that the centroid lattice includes all possible centroid

positions for which at least one pixel of the target may

be still present in the sensor image. Finally, in order to

build an integrated framework for detection and track-

ing, we augment the centroid lattice with an additional

dummy state that represents the absence of a target.



The �nal augmented lattice is

~L = fl: � ls + 1 � l � L+ li + 1g (2)

where zn = L + li + 1 means that no target is present

in the surveillance space during the nth sensor scan.

Target Model

Assuming real-valued sensor images, the clutter-free

image of a possible target is a mapping

f : ~L 7! <L

zn ! f(zn) (3)

where

f(zn) =

lsX
k=�li

an
k
ezn+k zn 2 L (4)

f(zn) = 0L zn = L+ li + 1 . (5)

In (4), el, 1 � l � L is a vector whose entries are all

zero, except for the lth entry which is one. If l < 1 or

l > L, el is de�ned as the identically zero vector.

The coeÆcients fan
k
g are referred to as the target

signature parmeters. In general, the target signature

is time-variant and stochastic as a result of random

changes in the re
ectivity and/or conditions of illumi-

nation of the target. Let an =
�
an
�li

: : : an
ls

�T
. In this

paper, we assume that the sequence of random vectors

fang, n � 0, is i.i.d. (independent, identically dis-

tributed) with a Gaussian probability density function

p(an) = N(ma;�a).

Observations and Clutter Model

The observations at the nth sensor scan, assuming

a 1D surveillance region and a single target per frame,

are collected in the L-dimensional column vector

yn = f(zn) + vn (6)

where f(zn) is the nonlinear target model in (4) and (5),

and vn is the background clutter vector, also referred to

as the background clutter frame. We assume that the

clutter frames vn, n = 0; 1; : : :, are also i.i.d.

Correlated Gauss-Markov clutter In general, each clut-

ter frame vn may exhibit a spatial (or intraframe) corre-

lation. We capture the clutter's spatial correlation using

the spatially homogeneous Gauss-Markov random �eld

(GMrf) model [6]. The clutter vector, vn, is a zero-

mean, �nite order, noncausal, spatially homogeneous

GMrf if it is the output, for 1 � i � L, of the �nite

di�erence equation [6]

vn(i) =

mX
p=1

�p [vn(i� p) + vn(i+ p)] + un(i) (7)

where un(i) is a correlated zero-mean Gaussian input

that is statistically orthogonal to vn(r), 8r 6= i and

whose statistics we derive in the sequel. A set of bound-

ary conditions is added to specify equation (7) near the

boundaries of the lattice. In this paper, we assume

Dirichlet boundary conditions, i.e., we make vn(i) = 0,

if i < 1 or i > L.

If we collect the samples vn(i) and un(i), 1 � i � L

in two long vectors vn and un, equation (7) can be

written in matrix format as

Avn = un (8)

where A is a Toeplitz, symmetric, m-banded matrix

with structure

A = I�

mX
j=1

�j(K
j

1
+K

j

2
) . (9)

In equation (9), I is the L x L identity matrix and K2 is

the L x L downward shift matrix whose entries are all

zero, except for the elements (i; i � 1) which are equal

to 1. K1 = KT

2
is the upward shift matrix. From the

orthogonality condition and the assumption of spatial

invariance in (7), we conclude that

E
�
vnu

T

n

�
= �2

u
I) E

�
unu

T

n

�
= �2

u
A (10)

whereE [:] denotes the expected value and �2
u
= E [un(i)

vn(i)], which is invariant with i by the spatial homo-

geneity assumption. Combining equations (8) and (10)

and noticing the symmetry of A, we see that

�v = E
�
vnv

T

n

�
= �2

u
A�1 (11)

i.e., the covariance matrix of the clutter vector is pro-

portional to the inverse of the structured matrix A. We

refer to A as the potential matrix [6]. A detailed study

of the structure and eigendecomposition of the potential

matrix for both 1D and 2D GMrfs and the relations be-

tween these models and fast sinusoidal orthogonal trans-

forms is found in [4].

Motion Model

With translational motion, the motion of a target is

completed speci�ed by the dynamics of the target's cen-

troid. The dynamics of the centroid the corresponding

augmented lattice ~L is speci�ed by a transition proba-

bility matrix, T, whose general element T (k, r) is

T (k, r) = Prob(zn = k � ls j zn�1 = r � ls) (12)

where 1 � k, r � L+ li + ls + 1.

3. OPTIMAL DETECTOR/TRACKER

Given the observations yn
0
=
�
yT
0
yT
1
: : :yT

n

�T
, from in-

stant 0 up to instant n, we want, at each instant n,



to determine whether a target is present or not (detec-

tion) and, if the target is declared present, to estimate

its position (range) in the surveillance space (tracking).

The optimal statistical solution for the joint detec-

tion/tracking problem follows a Bayesian strategy. From

a Bayesian point of view, it suÆces to compute at each

instant n, the posterior probabilities P (zn j yn
0
), for

all possible values of the random variable zn, including

the absent state. The formal solution is divided into

di�erent steps.

Filtering Step Let l = li + ls + 1 and de�ne the l-

dimensional column vector of signature parameters an
such that

an(i) = an
i

� li � i � ls . (13)

For li + 1 � zn � L � ls, the posterior probability

of zn conditioned on the observations is given by the

expression

P (zn j y
n

0
) =

Z
p(an, zn j y

n

0
) dan . (14)

In turn, using Bayes law and assuming that the sequence

fvng is i.i.d. and independent of both fzng and fang
for n � 1, we write

p(an, zn j y
n

0
) = Cnp(yn j an, zn)p(an, zn j y

n�1

0
)

(15)

On the other hand,

p(an, zn j y
n�1

0
) = p(an j zn; y

n�1

0
)P (zn j y

n�1

0
) .

(16)

But, from the assumption that the sequence fang is

i.i.d. and independent of fzng and fvng, for n � 1, we

write

p(an j zn; y
n�1

0
) = p(an) . (17)

Using (17), equation (16) reduces to

p(an, zn j y
n�1

0
) = p(an)P (zn j y

n�1

0
) . (18)

Substituting (18) into (15) and then, using (15) in (14),

we conclude that

P (zn j y
n

0
) = Cn

�Z
p(yn j an, zn)p(an) dan

�

�P (zn j y
n�1

0
) . (19)

Note that, for�ls+1 � zn � li orL�ls+1 � zn � L+li,

equation (19) still holds, but the de�nition of an must

be conveniently modi�ed to account for portions of the

target image that lie outside the sensor image.

Prediction Step From the total probability theorem

P (zn j y
n�1

0
) =

X
zn�1

P (zn j zn�1)P (zn�1 j y
n�1

0
) .

(20)

We detail in the sequel the minimum probability of error

detector and the optimal MAP tracker.

Detector Let H0 denote the hypothesis that no tar-

get is present at instant n and H1 denote the hypothe-

sis that a target is present during the nth sensor scan.

Given P (zn j y
n

0
), compute the posterior probabilities

of the detection hypothesis Hj , j = 0, 1. The minimum

probability of error Bayes detector follows the decision

rule

P (H0 j y
n

0
)

H0

>
<
H1

P (H1 j y
n

0
) . (21)

Tracker If hypothesis H1 is declared true, we compute

the conditional probability vector

Q
f

l
[n ] = P (zn = l j target is present,yn

0
) l 2 L

=
P (zn = l j yn

0
)

1� P (zn = L+ li + 1 j yn
0
)

(22)

The MAP estimate of target's centroid position is

ẑmap [n ] = arg max
l2L

Q
f

l
[n ] . (23)

4. FILTERING STEP: CORRELATED

GAUSSIAN TARGET

The challenge with random target signatures is to derive

an analytic expression for the observations kernel

Sn(i) =

Z
p(yn j an, zn = i) p(an) dan . (24)

Assume that the signature parameter vectors an is iden-

tically distributed for all sensor scans such that

p(an) = p(a) 8n . (25)

Suppose also that a is a Gaussian vector with meanma

(di�erent from zero) and covariance �a, and that the

clutter vector vn is an mth order noncausal GMrf as

introduced in section 2. Under the assumption of GMrf

clutter,

p(yn j a,zn = i) = k exp(�
Q
i

2�2
u

) (26)

where k is a constant, Q
i
is the quadratic form

Q
i
= yT

n
Ayn � 2yT

n
Afi + fT

i
Afi . (27)

In (27), A is the potential matrix from (9) and fi =

f(zn = i), with f being the nonlinear mapping in equa-

tions (4) and (5). Introduce now the vector

zn = Ayn (28)



where

zn(i) = yn(i)�

mX
j=1

�j [yn(i+ j) + yn(i� j)] (29)

form+1 � i � L�m. The term zn(i) in (29) is the error

in the prediction of yn(i) by the noncausal (two-sided)

mth order linear predictor

ŷn(i) =

mX
j=1

�j [yn(i� j) + yn(i+ j)] . (30)

For 1 � i � m or L � m + 1 � i � L, boundary

conditions must be supplied to de�ne the predictor. We

use Dirichlet boundary conditions, i.e, we make yn(k) =

0 for k < 1 or k > L and extend equation (29) to the

entire range 1 � i � L. We de�ne in the sequel the

l-dimensional vector

zi
n
=
�
zn
i�li

: : : zn
i
: : : zn

i+ls

�T
li + 1 � l � L� ls .

(31)

Using now the results in [5], we write

zT
n
fi = aT zi

n
=

lsX
k=�li

an
k
zn(i+k) li+1 � i � L� ls .

(32)

On the other hand, also using the results from [5],

fT
i
Afi = Ef (0)�

mX
j=1

�j(Ef (j) +Ef (�j)) (33)

for li +m+ 1 � L� ls �m. In (33),

Ef (0) = aTa (34)

Ef (j) =

ls�jX
k=�li

an
k
an
k+j

(35)

Ef (�j) =

lsX
k=�li+j

an
k
an
k�j

. (36)

Notice that

Ef (j) = Ef (�j) = aTK
j

1
a (37)

where K1(i; p) = 1 if p = i + 1, and zero otherwise,

1 � i; p � l. Hence,

fT
i
Afi = aT (I�

mX
j=1

2�jK
j

1
)a = aT�ca (38)

for li +m+ 1 � L� ls �m, with

�c = I�

mX
j=1

2�jK
j

1
. (39)

On the other hand, for li + 1 � i � L� ls,

p(a) = k1 exp

�
�
(a�ma)

T��1
a
(a �ma)

2

�
. (40)

Combining all previous expressions, it follows that, for

li +m+ 1 � i � L� ls �m,

Sn(i) = C

Z
exp(

1

2

�
2��2

u
aT zi

n
� aT (��2

u
�c)a

� aT��1
a
a+ 2aT��1

a
ma

�
) da . (41)

where

C = kk1 exp(�
yT
n
Ayn

2�2
u

) exp(�
mT

a
��1
a
ma

2
) . (42)

Completing the squares in (41), we notice that

2��2
u
aT zi

n
� aT (��2

u
�c)a� a

T��1
a
a+ 2aT��1

a
ma =

�
�
aT (��2

u
�c +��1

a
) a� 2aT (��2

u
zi
n
+��1

a
ma)

�
=

�
�
(a�mi)

T��1
r
(a�mi)�m

T

i
��1
r
mi

�
(43)

where

�r = (��2
u

�c +��1
a
)�1

mi = �r (�
�2

u
zi
n
+��1

a
ma) . (44)

Integrating (41) and absorbing all constants into the

normalization factor Cn, we �nally write the ith entry

of the observations kernel, Sn(i), as

Sn(i) = exp(
mT

i
��1
r
mi

2
) li+m+1 � i � L�ls�m .

(45)

Remark: Boundary Conditions Near the bound-

aries of the lattice,we must modify the expressions for

the observations kernel Sn(i) in order to account for the

fact that portions of the target are no longer visible in

the sensor's image. For example, for �ls + 1 � i � li,

we get

yT
n
Afi = zT

n
fi =

lsX
k=1�i

an
k
zn(i+ k) = (an

i
)T zi

n
(46)

where

zi
n

= [zn(1) : : : zn(i+ ls)]
T

(47)

an
i

=
�
an
1�i

: : : an
ls

�T
. (48)

Similarly, for L� ls + 1 � i � L+ li,

yT
n
Afi = zT

n
fi =

L�iX
k=�li

an
k
zn(i+ k) = (an

i
)T zi

n
(49)



where

zi
n

= [zn(i� li) : : : zn(L)]
T

(50)

an
i

=
�
an
�li

: : : an
L�i

�T
. (51)

Likewise, the analytic expressions for the energy term

�i = fT
i
Afi must changed to account for the correct

length of the signature vectors an
i
. In order to com-

pute the entries of the observations kernel, the proce-

dure then is to write p(yn j an
i
; zn = i), multiply it

by

p(an
i
) = ki exp

�
�
1

2
(an

i
�mi

a
)T (�i

a
)�1(an

i
�mi

a
)

�

(52)

and complete the squares. The resulting expression for

Sn(i) is analogous to equation (45) with the proper cor-

rections in the dimensions/de�nitions of the matrices

and vectors used to compute mi and �r. Another im-

portant point is that proper normalization factors must

be used to make the normalization of Sn(i) compatible

with the normalization used away from the borders. We

omit these technicalities here for the sake of conciseness.

5. DETECTION PERFORMANCE

We present in this section detection performance results

for the algorithm introduced in section 3. We simulate

1D Gaussian targets with dimensions li = ls = 4 moving

in a grid of size L = 100. The simulated targets are

samples of a correlated �rst GMrf model with mean

ma = 1 and covariance parameters �a and �a. The

target image is cluttered by a �rst order GMrf clutter

with parameters �c and �c.

We assume that there is at most one target present

per frame. Targets that are present move in the sen-

sor grid with nominal velocity of 2 pixels/frame and a

probability of 
uctuation of one pixel around the nom-

inal position equal to 0.40. Once a target disappears

from the grid, there is a total probability pa = 0:20 of a

new target reappearing randomly at any location in the

sensor grid. This assumption corresponds to the worst

case scenario when new tracks can be initialized with

uniform probability at any cell in the sensor grid.

By varying the threshold in the detection test (21),

the algorithm changes from a minimum probability of

error Bayes test to a multiframe Neyman-Pearson test

that maximizes the probability of detection for a �xed

probability of false alarm. Figure 1 shows the experi-

mental receiving operating characteristic curves (R0Cs)

for the modi�ed detector, with �a = 0:2, �a = 0:16, and

�c = 0:24, for two levels of average SNR =

20 log
10
(ma=�c), respectively 3 and 0 dB (i.e., �c = 0:7

and �c = 1). Figure 2 shows the ROCs now with

�a = 0:4 (i.e, increasing the variance of the target pix-

els). The experimental curves were estimated from a

total of 8,000 Monte Carlo runs.

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

probability of false alarm

p
ro

b
a
b
ili

ty
 o

f 
d
e
te

c
ti
o
n

SNR = 3 dB
SNR = 0 dB

Figure 1: Multiframe Bayes detector in GMrf clutter,

�a = 0:2
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Figure 2: Multiframe Bayes detector in GMrf clutter,

�a = 0:4

The plots in �gures 1 and 2 indicate excellent de-

tection performance, even in the adverse conditions of

heavy clutter. For example, the algorithm reaches a 90

% probability of detection for false alarms rate of 10�3.

There is a slight perceptible deterioration within the

margin of error of the experiment when we increase the

target variance.

We compare in the sequel the optimal multiframe

detector with a single frame likelihood ratio test (LRT)

that ignores the motion model. The single frame LRT

algorithm reduces to the test

p(yn j H0)

H0

>
<
H1

� p(yn j H1) (53)

where � is a threshold that varies according to the de-

sired probability of false alarm. Using a �xed value of
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Figure 3: Single frame versus multiframe ROCs in cor-

related clutter: �a = 0:2 and �c = 0:7

SNR, we vary the thresholds in tests (21) and (53) to

plot the receiver operating characteristic curves (ROCs)

for both detectors. The ROC curves, estimated from

8,000 Monte Carlo runs, are shown in �gure 3 for SNR

= 3 dB and �a = 0:2. The curves in �gure 3 show

that, in a scenario of dim targets, there is a dramatic

deterioration in performance if detection decisions are

made based on one single frame, ignoring the motion

model. These results corroborate the advantages of

spatio-temporal processing in moving targets detection.

6. SUMMARY

We presented in this paper an optimal Bayesian algo-

rithm for multiframe detection and tracking of moving

correlated Gaussian targets in correlated Gauss-Markov

clutter. Performance studies using Monte Carlo simu-

lations show that there is a substantial detection per-

formance improvement over the single frame likelihood

ratio test (LRT) detector.
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