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Abstract

Hereafter, we propose a novel approach that couples HW/SW
codesign with redundancy techniques to implement speech
recognition systems (SRS). Due to the specific characteristics of
digital signal processing (DSP) algorithms, these systems
deserve special attention when partitioning the HW and SW
parts. Also, in many applications like voice-oriented bank
transactions or security systems, the need for reliability is also
mandatory. Therefore, the methodology we present herein
partitions the HW and SW parts in such a way to boost system
performance while area overhead is maintained as low as
possible. At the same time, reliability in terms of redundancy
(Consistency Check and Transparent BIST) is included into the
SRS. Additionally, a new approach to reconstruct noisy speech
signals is also presented. This approach is analogous to the
hardware technique known as hot standby sparing, where the
main program and its copies are all running simultaneously. In
this scheme, the speech signal reconstruction is based on real
time reconfiguration. Preliminary simulation results have also
been performed and are presented in order to illustrate the
proposal. In the next sections of the paper, we will refer to the
proposed approach as “speech recognition-oriented HW/SW
partitioning and fault-tolerant design” approach (or simply
SCORPION approach)1.

Keywords: HW-SW Codesign; Digital Signal Processing – DSP;
Speech-Recognition Systems; Fault-Tolerance Techniques;
Transparent BIST; Area overhead; Performance Degradation.

1. Introduction

It is of common agreement the large increase of the
number of applications requiring digital signal processing (DSP)
components (implemented either in HW or SW parts). This
situation is particularly true for speech recognition-oriented
applications. On the other hand, the present design
methodologies do not consider the specific characteristics of the
most commonly used DSP algorithms. Even representative HW-
SW codesign methodologies (and tools) found in the literature do
not take these particularities into account. In other words, these
methodologies do not consider in the design flow the specificity
of the target application, for instance: control-dominant, data
processing-oriented (DSP applications), and real-time

                                                          
1 This work is partially supported by CNPq and FAPERGS.

constraints. In the specific case of speech recognition systems
(SRS), there are parts of the algorithm that present a strong
parallelism profile, while others are fully sequential. In both
cases, a high-volume (and reliable) computation is required.

If we consider the case of DSP applications like real-
time robot decision-making, Internet interactive multimedia,
portable telephones or aircraft on-board main computers, we can
have a large spectrum of dedicated functions such as: voice
processing and recognition algorithms; image acquisition,
processing and pattern recognition; real-time data and image
transmission protocols. Thus a high-throughput system
architecture is mandatory since these systems are expected to be
used in real-time critical applications.

Therefore, in order to handle such specific
characteristics of DSP algorithms, in particular those used by
SRS, we are proposing hereafter a specific design flow to
optimize the performance and reliability of such systems, the
SCORPION approach. To do so, this approach performs the HW-
SW partitioning and the inclusion of fault-tolerant (FT) functions
into the HW part. These functions are described in VHDL and
whose parameters can be modified (adjusted) by the designer in
order to satisfy application requirements [1-3].

In a second step, this approach also estimates the final
reliability for the system on the design. These procedures are
partially automated by a CAD tool (FT-PRO Methodology) [1-3]
and are performed at the initial steps of the design flow [17,26].
By doing so, the main goal of this approach is to minimize time
and design cost (including prototyping, testing and reliability
estimation) [3-7]. Fig. 1 summarizes the main steps of the design
flow carried out by the proposed approach.

The reminder of the paper is divided as follows:
Section 2 presents the basic concepts involving speech
recognition systems. The control and data flows, by means of
general block diagrams, are briefly introduced to readers not
familiar with such type of DSP systems. Section 3 is divided into
two sub-sections in order to describe the proposed methodology:
while the first part is dedicated to the HW-SW partitioning issue,
the second part is involved with the incorporation of FT
functions in the HW part of the SRS. Section 4 is devoted to
experimental results. A computation example is presented in this
section in order to illustrate the proposed HW-SW partitioning
and FT functions added to improve system performance and
reliability. To conclude, Section 5 presents the final
considerations and future work.
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Fig. 1. Design flow of the proposed “speech recognition-oriented HW/SW partitioning and fault-tolerant design”
SCORPION approach.

2. Preliminary Considerations on the General
Structure of Speech Recognition Systems

A speech recognition system (SRS) is basically a
pattern recognition system dedicated to detect speech. In other
words, to identify language words into a sound signal achieved
as input from the environment. Fig. 2 shows the main steps
performed by a front-end speech recognition system [8,9].

Signal Analysis Pattern Matching Logic  Decision

Vector Quantization 
(VQ) Codebook * Feature Extraction

Speech
*

Words

Reference Patterns 
(HMM Markov Models)

Fig. 2. General block diagram of speech recognition
systems [8,9].

In the signal analysis step, a speech sampling will be
made with an A/D converter. Those samples are processed in
order to extract some relevant features from speech signal input.
This step is responsible for signal handling, by converting the
analog signal sampling, into a digital representation. The last task
performed in this step is the vector quantization, when the speech
signal is then replaced by a proper sequence of label-codes (this
is the input for the next step of the SRS system, which is
responsible for pattern matching).

The main tasks performed in the signal analysis step are
depicted in fig. 3a, and are described as follows:

•  Sampling: the SRS converts speech sound from the outside
world into digital representation. Essentially, this task will
include a sample and hold device, and an analog-digital (A/D)
converter.

•  Low pass filter: cuts those high frequencies found on the
signal due to sampling. Usually this filter is adjusted by
sampling rate [10].

•  Pre-emphasis filter: adjusts the high variations on spectrum
frequencies due to glottal pulse and  lips radiation found  in
the speech signal behavior [11,12].

•  Windowing: cuts the speech signal into blocks of 10 ms
signal frame each. A hamming window adjusts those frame
samples [13].

•  LPC/Cepstral analysis: algorithms process each frame in
order to complete the cepstral coefficients from linear
predictive coefficients [11,14].

•  VQ – Vector quantization1: each vector of cepstral
coefficients is evaluated by distance measure. Using, as a
map, a codebook with reference vectors in the acoustic
space. The final output is a sequence of label codes2 (usually
called observation sequence) that will be evaluated by the
pattern matching process [10,12,15].

                                                          
1 LPC: “Linear Predictive Coding “. Cepstral is a homomorphic
analysis usually employed in speech processing [8,11,14].
2 These labels are numbers relating the codebook reference
vectors, usually called centroids, in VQ.  Each label-code is just a
label to those centroids.  After VQ, each label-code in the
sequence output is called observation.



The pattern matching and the decision logic steps are
the “identification” steps, where the words spelled in the speech
signal are recognized by generating a sequence of text words.
The observation sequence is evaluated using Hidden Markov
Models (HMM), which, as the acoustic reference pattern, plays
the main role in the recognition process [16-18].
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Fig. 3. General block diagrams: (a) Signal Analysis Block;
(b)Pattern Matching & Logic Decision Block [8,9].

To do so, the pattern matching and decision logic
block input data (i.e., the observation sequences from the Signal
Analysis Block) are actually an “index” to access the local cache
memories associated with each HMM block, as seen in fig. 3b.
As response to these accesses, the local memories output the
respective “probability of changing state from one node to
another”, in the Markov Model). Then, these probability values
are added to the previous values stored in the pre-accumulators
of the pattern matching and logic decision block. (See fig. 3b.)

At the end of this process, the logic decision compares
the final probability values from the HMM blocks against a
reference (threshold) value and selects the one with higher score
(i.e., higher probability) of being the searched word. Then,
recognizing the word. Usually, the pattern matching and decision
logic steps have been implemented by the Viterbi algorithm
[8,12,17,25] to perform the evaluation of the code-label sequence
against the HMM structures. Fig. 3b illustrates this situation for
the pattern matching process [8,9].

3. SCORPION: The Proposed Methodology

3.1. Partitioning the SRS into HW and SW Parts

The basic idea behind the proposed methodology is to
take advantage of the specific SRS dataflow, as seen in figures 2
and 3, to optimize the HW-SW partitioning step. In this case, the
specific dataflow involves by one side low-complexity high-
volume computations (represented by parallel additions followed
by XOR bit-a-bit operations to perform pattern matching & logic
decision), and by other side high-complexity high-volume
computations (represented by a sequence of digital filtering
operations to adjust frequency variations during the signal
analysis and conditioning procedure). Also, note that there is
almost no data dependency in the pattern matching & logic
decision algorithms, while in the signal analysis one, data are
strongly dependent one to each other. Thus, while the pattern
matching and logic decision algorithms present an intrinsic
parallel-execution profile and can be implemented by an SIMD
architecture, the later algorithm (signal analysis) is characterized
by a series-execution profile and thus, being implemented by
MISD architectures.

Therefore, due to the high-complexity and the
sequential profile of the functions performed by the Signal
Analysis Block, this SRS part should be implemented in SW. On
the other hand, the huge parallelism profile of the functions that
implement the Pattern Matching & Logic Decision Block
associated with the high-volume and low-complexity
computations performed by these functions, this block is mapped
to HW. Fig. 4 summarizes this behavioral analysis. The SRS
main blocks shown in this figure have been partially prototyped
on the Texas EVM-320TMS67xx platform (the SW part) [23]
and on two FPGAs 10K20 and 7K128 Altera components (the
HW part) [24]. Preliminary experimental results can be found in
[26].

3.2. Implementing fault-tolerance in the parts of
the SRS

After partitioning the speech recognition system into
HW and SW parts as depicted in the previous section, the
discussion hereafter is involved with the reliability requirements
associated with this type of system. In this case, there are two
points-of-views: the SW domain and the HW domain.

First, consider the case of fault-tolerance in SW: in
traditional SRS implementations (i.e., fully SW-based
microprocessor implementations), it is of common agreement the
use of techniques for filtering and conditioning analog (and
digital) signals through the whole acquisition process: specially



in the “sampling”, “low-pass filter”, pre-emphasis”, and
“windowing” (see fig. 3a.). These techniques are very well
known by the DSP designers community and present, in general,
a very high degree of success [22]. Therefore, the assessment of
fault-tolerance in SW is not really a dramatic issue, so that it is
not considered in the present work.

Observation 
Sequences 

word recognition

Signal Analysis & 
Conditioning Block

Pattern Matching & 
Logic Decision Block

Speech Sound

HW Part

SW Part

SRS

Fig. 4. SRS main blocks, after partitioning into SW and
HW parts.

Now, consider fault-tolerance in the HW part: as the
main goal of this work, there are three approaches that have
proposed to be incorporated into the SRS systems architecture,
and whose reasons are described hereafter. Two of them are
completely new proposals (“Concurrent Consistency Check”, and
“On-line Speech Signal Reconstruction and Checking”), while
the third one (“Transparent BIST”), was adapted from the
literature to satisfy the specific characteristics of DSP systems, in
particular those dedicated to speech recognition applications.

3.2.1. Concurrent Consistency Check (CCC)

In the following discussion, consider initially that the
pattern matching & logic decision step would be implemented by
traditional SW algorithms running on commercial DSP
processors. In general, the datapath of these components are fit to
operate with 16- or 32-bit length words. Since voice signals are
commonly represented in 8- or 16-bit length words, the
occurrence of overflow during the typically performed multiply-
and-accumulate (MAC) operations is very uncommon and does
not really affect substantially system operation performance.

As consequence, reliability is not really an important
issue when one considers traditional SW implementations of the
pattern matching & logic decision step. (Instead of this, the most
important concern of designers are, in this case, time constraints,
since this step must be performed in real time.)

Now, consider that the implementation of the pattern
matching & logic decision step is based on a HW part. In this
case, reliability becomes an important issue because in general,
the datapath of this part is only 8-bit wide, in order to minimize
area overhead. In other words, the occurrence of overflow during
MAC operations is much more frequent when compared with its
counterpart implemented in SW and running in a 32-bit
commercial processor.

To have a better understanding of this problem,
consider again fig. 3b. This figure shows basically the block

diagram of a Hidden Markov Model (HMM) we have developed
to execute the Viterbi algorithm in HW [9]. The goal of this
HMM structure is to evaluate the observation sequence (which
comes from the signal analysis & conditioning step, i. e. from
the SRS SW part) and associates a given score to it. This is done
by performing a sequence of MAC operations by using the
adders, pre-accumulators and accumulators shown in fig. 3b.
Note that this is a 3-state HMM model, since the input
observation sequence is fed in parallel into 3 adders
simultaneously. (For more details about the operation of such a
HW implementation of the Viterbi algorithm, readers should
address references [8,9].) The HMM shown in fig. 3b. is used to
compute the score for only one word. Therefore, if the SRS is
designed to recognize n words, a number of n HMM blocks is
required. However, there is a lack of reliability in this structure
due to the sequence of MAC operations performed in the narrow,
low-cost datapath of 8-bit wide. The consequence is the frequent
occurrence of overflows during the MAC operations that
considerably impacts the confidence of the scores generated at
the end of this step. Thus, impacting the confidence of the words
recognized by the SRS.

To overcome this problem, we have proposed in this
work a concurrent consistency check (CCC) for every MAC
operation performed in HW. Therefore, the CCC approach
performs an 1-bit shift right in the contents of the HMM
accumulators (accum. 1, accum. 2, accum. 3, in fig. 3b.) after
every MAC operation. By dividing by a factor of 2, we maintain
constant the distance between the partial scores stored in the pre-
accumulators in each of the states of the HMM model (pre-
accum. 1, pre-accum. 2, pre-accum. 3, in fig. 3b.), at the same
time that we avoid the occurrence of overflow during a large
sequence of MAC operations.

3.2.2. Transparent BIST

Another reliability problem we have addressed during
the HW implementation of the pattern matching & logic decision
block is the confidence of the large amount of reference data
stored in the memories (codebooks) associated with the HMM
structure. More precisely, every time an observation sequence
enters in the HMM structure, it addresses a memory array in
order to select a reference code, which is just the Markov
probability for it to change from that state to the next. Typically,
one codebook is associated to each input of the HMM structure,
connected at the inputs of the adders in the HMM model (“Cache
Memory” blocks, in fig. 5). Typically, a codebook is an array of
128, 256 or more addresses, each address storing one byte of
information. Thus, for the simple SRS shown in fig. 5 a memory
system to store 1152 bytes is required (128 bytes x 3 states x 3
words). For more realistic SRSs, with 6-state HMMs and 256-
address codebooks, which are also able to recognize some
hundreds or thousands of words, typical memory capacities rang
from 256KBytes to 25.6Mbytes. In order to protect this large
space of critical memory data, we implemented the Transparent
Built-In Self Test (BIST) approach [19-21] in the pattern
matching & logic decision block. This choice can be explained
as follows:

a) need of minimizing area overhead (this approach is one of
the best choices found in the literature in terms of area



overhead and types of faults detected in memory
structures. Just a an example, in [20] the authors claim an
area overhead of 1.2% due to the inclusion of Transparent
BIST in the case of a 128Kbytes X 8Bytes memory (and
this value decreases as the RAM size increases).

b) associated with low area overhead, the Transparent BIST
approach presents a high capability of fault detection by
indicating the occurrence of stuck-at faults, transition
faults, coupling faults, decoder faults and read/write logic
faults [20].

c) since SRSs are used in real time applications, there is a
need for very short “down periods”, that are periodically
required to check the functionality of the SRS mass
memory system. At this point, the Transparent BIST
approach also presents the incomparable advantage of
preserving the contents of the RAM memory after testing.
Thus, this approach is very suitable for periodic testing
since we do not need to save the RAM contents before
the test session and to restore them at the end of this
session.

Logic Decision

Local  
Cache Memory 1

Observation Sequences  
(from the Signal Anaysis Block)

HMM (word 1)

word recognition

Local  
Cache Memory 2

HMM (word 2)

Local  
Cache Memory 3

HMM (word 3)

Fig. 5. Pattern Matching & Logic Decision Block
implemented to recognize 3 words [9].

Table 1 presents the algorithm for Transparent BIST. In
this table Rai means that we perform a read operation on word i
and the read value is equal to ai (the initial value of word i).
Similarly, Rai(not) means that we perform a read operation on
word i and the expected value to be read is equal to ai(not). Wai
and Wai(not) mean that we write ai or ai(not) on cell i. We
remark that the last values written in the RAM are equal to the
initial RAM contents. Thus, the algorithm is transparent.

The sequences S1 and S2 address the RAM in some
order while the sequences S3 and S4 address the memory words
in the reverse order. Note also that the test output responses must
be checked. This is done by adding an algorithm which allows
predicting the signature of the RAM output responses. This
algorithm is called “Signature Prediction Algorithm”, and is
given in table 2. Therefore, the data read during the execution of
the sequence shown table 2 are injected into an output response
compactor (MISR – Multiple Input Shift Register) [20,22] in
order to generate the predicted signature of the memory test.
After this step, the same procedure is performed during the
execution of the transparent BIST itself, as shown in table 1, in
such a way that all the data read from the RAM are also injected
into the same MISR, so that this time the test signature is
generated. The last step of the transparent BIST approach is the
comparison of both of the signatures: the predicted and the one
generated during the test itself. For a fault-free RAM, one can
expects that the signatures are equal.

Note that the data read during the execution of
sequences S1’ through S4’ of the signature prediction algorithm
(table 2) are sometimes inverted in order to match the data read
during the execution of sequences S1 through S4 of the
transparent BIST test (table 1). For more detailed description and
operation of the Transparent BIST technique, readers can address
references [19-21].

S1 S2 S3 S4
Ra1 Wa1(not) Wa1 Wa1(not) Ra1(not) Wa1 Ra1 Wa1(not)               Ra1(not) Wa1 Wa1(not) Wa1              Ra1 Wa1(not) Ra1(not) Wa1

 Ra2 Wa2(not) Wa2 Wa2(not)  Ra2(not) Wa2 Ra2 Wa2(not)             Ra2(not) Wa2 Wa2(not) Wa2           Ra2 Wa2(not) Ra2(not) Wa2

    ...     ...                                                    ...                                                  ...

        ...         ...                                               ...                                               ...

          Ran Wan(not) Wan Wan(not)           Ran(not) Wan Ran Wan(not)   Ran(not) Wan Wan(not) Wan   Ran Wan(not) Ran(not) Wan��
 execution time

Table 1. Algorithm for Transparent BIST.

S1 S2 S3 S4
R1 R1 R1                   R1              R1 R1
   R2     R2 R2                R2           R2 R2
       ...        ...             ...              ...
         ...           ...            ...           ...
            Rn             Rn Rn         Rn Rn Rn��

 execution time

Table 2. Signature Prediction algorithm.



3.2.3. On-line Speech Signal Reconstruction

Although convolutional codes, first introduced by Elias
[25], have been applied over the past decades to increase the
efficiency of numerous communication systems, where they
invariably improve the quality of the received information, there
remains to date a lack of reliability when such an information is
used to represent speech. In other words, voice-oriented systems
used in bank-transaction or security applications are frequently
struggled by noise like electromagnetic interference, or just
background noise. As consequence, the information (i.e., the
speech) is partially (or even totally) buried by noise, thus
reducing the reliability of the incoming signal.

To overcome this problem, we are proposing a new
approach, namely On-line Speech Signal Reconstruction, whose
goal is to minimize (or even eliminate) the noise associated with
the voice signal, and thus allowing a more reliable speech
recognition process by the system. First, this is performed by
reconstructing the incoming signal when the scores of the words
expected to be recognized are lower than predefined values.
Second, by checking the consistency of the “reconstructed”

words by recognizing them a second time (in this case, high
recognition scores are expected). In some sense, this approach is
analogous to the hardware technique known as hot standby
sparing, where the main program and its copies are all running
simultaneously [22]. In this scheme, the speech signal
reconstruction is based on real time reconfiguration. Fig. 6
details the main blocks of the proposed technique.

Basically, the approach works as follows: the incoming
signal is analyzed by the Viterbi Algorithm which was
implemented by means of the Hidden Markov Models (HMM),
exactly as described in Section 2 (fig. 3b). Note that the
incoming signal (the SRS input indicated by “*” in fig. 6) is the
observation sequences, i.e., digital code labels representing
speech. Therefore, in the occurrence of an incoming message, the
Subsystem-I begins the process of recognizing the speech from
the arriving observation codes. Note that the SRS must be
previously trained to do this work, and the number of words that
can be recognized is equal to the HMM Blocks inside Subsystems
I or II. Each one of these HMM Blocks is used to model a single
word.

* *  Selects the best code label sequences (Gn or *)  that will be propagated to  
     the next step of the recognition process (i.e., Subsystem-II).

*  Incoming information 
   (Code Labels Sequence) 

Code Labels  
(Pseudorandom Generation)

Generators Block

Generator (3)

Generator (2)

Generator (1)

G3

G2

G1

HMM  
(word 1)

Subsystem-I

* HMM  
(word 2)

HMM  
(word 3)

word 
recognition

HMM 
(word 1)

HMM 
(word 2)

HMM 
(word 3)

Incoming Information  
(Reconstructed Code Labels Sequence)

A3

B

MUX 2 x 1 (3)

Enable (3) **

*
G3

A2

B

MUX 2 x 1 (2)

Enable (2) **

*
G2

A1

B

MUX 2 x 1 (1)

Enable (1) **

*
G1

V
A

C
 B

lo
c

k 
(P

ro
c

e
ss

 S
c

h
e

d
u

le
r)

Subsystem-II

Lo
gi

c 
D

ec
is

io
n 

(S
co

re
 C

om
pu

ta
tio

n)

Fig. 6.  General Scheme of the On-line Speech Signal Reconstruction Approach.

The whole approach is controlled by the Viterbi
Algorithm Controller (“VAC Block”, in fig. 6) which supervises
the recognition process running on the HMM Blocks in

Subsystem-I. While the goal of these HMM Blocks is to compute
the HMM probability scores for each of the incoming
observations, the goal of the VAC Block is to select the best code



label sequences1 (Gn or *) that will be propagated to the next step
of the recognition process (i.e., to Subsystem-II). As can be seen
in fig. 6, this selection is done through MUX 2x1 control signals
“Enable (n)”.

The Generators Subsystem operates synchronously
with the HMM Blocks, under a single clock signal generated by
the VAC Block. The goal of the Generators Subsystem is to
generate those segments of the incoming information that are
buried in noise so that the information cannot be recognized by
the HMM Blocks as “speech”. To do so, the Generators
Subsystem simulates a “random hidden Markov process2”, and
generates an observation sequence of code labels with the same
probabilistic properties of the incoming signal. Thus, those new
observations replace the noisy segments whenever the decreasing
probabilistic scores are detected.

Once the incoming information (i.e., the reconstructed
code label sequences) reaches Subsystem-II, the goal of the HMM
Blocks therein is to compute, as example of the HMM Blocks
inside Subsystem-I, the probability scores of changing from one
state to another in the Markov chain. However, in Subsystem-II
this probability is computed for the reconstructed signal (in
Subsystem-I, these probabilities were computed for the original
incoming signal, before the reconstruction process), which is
composed partly by the original code labels (indicated by “*” in
fig. 6), and partly by the pseudorandom-generated code labels
(G3, G2, or G1).

Finally, the Logic Decision Block chooses between the
three words the one with the higher score, i.e., the one with the
higher probability of occurrence.

4. Experimental Results

This section presents a computation example that
we have developed to illustrate the proposed approach.
With this purpose, we implemented and trained3 an SRS to
recognize 2 words. This system was prototyped on a HW-
SW development environment based on the TMS-320C67
Texas DSP microprocessor [23] and on the FLEX10K20
FPGA Altera Compoment [24]. The first goal was to show
the area overhead resulted due to the inclusion of the

                                                          
1 Note that it may happen the incoming signal can be partial or
totally corrupted by noise. In this case, the VAC Block switches
from the original incoming signal (represented by “*” in fig. 6) to
the pseudorandom generated code labels during a predefined
period of time, and then, bouncing back to the original incoming
signal. This process is dynamically performed every time the
original incoming signal is corrupted by noise (i.e., the computed
probability by the HMM Blocks in Subsystem-I is lower than a
predefined threshold value).
2 Note that actually, the observation sequences are not completely
randomly generated because the universe of label codes explored
by the Generators Block to generate the observation sequence is
bounded by the specific HMM probability model that was selected
by the VAC Block.
3 System trained using the HTK software tool (Hidden
Markov Model Tool Kit).

transparent BIST by one side, and the shifter logic
necessary to perform the concurrent consistency check
(CCC) for every MAC operation executed in HW, by the
other side. The second goal was to show the performance
boost resulted from migrating into HW, part of the SW
code that executes the pattern recognition and logic
decision tasks in traditional SRSs. Therefore, Table 3
summarizes these numbers.

Note that we restricted the SRS implementation to 2
words due to the space limitation imposed by the FPGA
component (EPF10K20RC240-4). This particular
implementation yielded the worst-case implementation for the
transparent BIST approach in terms of area overhead (as can be
seen in table 3c: 20.99%). However, note that the area required
to implement the transparent BIST is approximately constant
(roughly 190 CLBs) while the increase of the number of words to
be recognized by the SRS means that more cache memory must
be proportionally added to the pattern recognition & decision
logic block. Therefore, for increased-vocabulary SRSs, for
instance 4, 8, 16, 32, or 64 words, one can expect the transparent
BIST area overhead be reduced to some order of 11%, 5.5%, 3%,
1.5%, and 0.8%, respectively, and so on.

Note also that the increase of memory space to
accommodate the additional information required by the SRS to
handle larger vocabularies does not mean necessarily that the
time required to test this memory will increase (in this case,
approximately 0.06132 s). The reason is that the increase of
memory is done in the form of adding new local cache memories
to the new HMM blocks that are required to model the additional
words to be recognized by the system. In this case, the
transparent BIST performs a periodical test of all the local cache
memories in parallel, which does not actually increase the overall
time required to test the SRS memory.

Note also that even with the HW implementation
including the transparent BIST, the runtime of the proposed
HW-SW partitioning approach (0.06132 s) is roughly 10 times
faster than the one of traditional SW-based microprocessor
implementations (0.577 s). This condition drives us to the
comfortable position to execute periodical tests of the SRS with
negligible performance penalty, and completely transparent to the
user.

Finally, the SRS word recognition effectiveness
resulted by the use of the concurrent consistency check
(CCC) technique is illustrated in table 3d. By comparing
both of the HW implementations: the original one (without
redundancy) and the one with CCC, the confidence was
improved approximately by a factor of two. When the
confidence of the HW implementation based on the CCC
technique is compared with the one yielded by the
traditional SW-based microprocessor implementation, the
same degree of success is verified. Note that in both cases,
a degree of 100% could not be reached due probably to
undesired environment noise interference during the
generation of the reference data to be stored in the vector
codebook and in the local cache memories associated with



the HMM blocks. While the vector codebook stores the
observation sequence values that represent reference
vectors in the acoustic space, the cache memories store the
probability of each of these sequence values to change

state from one node to another, in the Markov Model.
These data are critical for the correct operation of the SRS,
and any change in these values (induced by noise, for
instance) may lead to system malfunction.

System Performance (s)

[time required to
recognize a word]

Performance
Improvement

Traditional SW-based microprocessor implementation 0.577 ---

HW-SW based partitioning approach (original HW
implementation without redundancy)

0.00132 437 times

(a) SRS performance improvement due to the system partitioning according to the proposed HW-SW codesign technique.

System Performance (s)

[time required to
recognize a word]

Performance
Degradation

Original HW implementation (without redundancy) 0.00132 ---

HW implementation including the transparent BIST * 0.06132 46 times

* Standalone runtime for the transparent BIST through the local cache memories of the HMM blocks: 60ms.

(b) SRS performance degradation due to the inclusion of the transparent BIST into the HW part. (The concurrent consistency check (CCC)
is performed in parallel with the application, thus not resulting in performance penalty.)

Area (configurable
logic blocks – CLBs)

Area
Overhead (%)

Original HW implementation (without redundancy) 905 ---

HW implementation including the concurrent consistency check (CCC) 907 0.22

HW implementation including the transparent BIST 1095 20.99

HW implementation including both CCC and transparent BIST 1097 21.21

(c) Area overhead required by the different implementation forms of the fault tolerant Pattern Matching & Logic Diagram Block.

System Confidence

[frequency of which words are
recognized correctly]

Traditional SW-based microprocessor implementation approx. 90%

HW-SW based partitioning approach (original HW implementation
without redundancy)

approx. 40%

HW implementation including the concurrent consistency check (CCC) approx. 90%

(d) SRS reliability (word recognition confidence) due to the inclusion of the concurrent consistency check (CCC) technique after each MAC
operation in the pattern recognition & logic decision block.

Table 3.  Summary of the SRS implemented to recognize 2 words.

Similarly to Table 3,where the SRS implemented partly
in HW (FPGA) and partly in SW (DSP processor) was trained by
using the HTK software tool, Table 4 shows simulation results
for another SRS also trained with the same tool, but this time
only simulated in Matlab environment. With this purpose, we
have considered 3 words to be recognized by the system, each of
them represented by a group of 30 10ms-duration code labels. In
this case, the incoming information indicated by “*” in fig. 6 is
represented by a sequence of 90 code labels (3 words x 30 code
labels x 10ms = 900ms overall speech time duration). The basic
idea behind Table 4 is to verify the improvement of the SRS

confidence resulted from using the on-line speech signal
reconstruction technique described in Section 3.

After analyzing this table, we can take the following
conclusions:

1) The proposed technique is very effective for noise corruption
levels hanging from 50 to 80 percent of the total incoming
information.

2) Values above 80% must be discarded, since due to the high
values of noise the SRS (with or without the proposed



approach) is expected to “randomly” recognize the correct
word.

3) For values below 50%, the SRS degree of success is quite
similar to the one obtained without the proposed technique.
This is explained due to the fact that the VAC Block rarely
selects the pseudorandom-generated code labels from the
Generators Subsystem (Gn , in fig. 6), since the original
segments of the incoming information that are buried in noise
can still be correctly recognized by the HMM Blocks in
Subsystem-I as “speech”. As consequence, the original

information indicated by “*” in fig. 6 is selected during the
most part of the time by the VAC Block (through MUX 2x1
components) and propagated to the next stage (Subsystem-
II). This results that the incoming information before
reconstruction is quite similar to the one after reconstruction.
In this case, the SRS is expected to present approximately
the same degree of success in terms of recognizing the
correct word.

System confidence (%)

[frequency of which words are recognized correctly]

Percentage of the
incoming information

corrupted by noise * (%) Before After

90 33.33 23.33
80 50.00 63.33
70 73.33 76.67
60 90.00 92.00

From 0 to 50 98.00 98.00

* Sequence size: 30 code labels per word. Each code label represents 10ms of continuous speech sound. Three words were considered in
this simulation. (This sequence of code labels is represented by the incoming information indicated by “*” in fig. 6.)

Table 4. Preliminary results showing the SRS performance in terms of recognizing the correct word before and after using
the on-line speech signal reconstruction technique. (Simulation results obtained for a software implementation of
the on-line speech signal reconstruction technique running in a Matlab environment.)

5. Final Discussions & Future Work

In the previous sections, we have proposed a
novel approach (namely, “speech recognition-oriented
HW/SW partitioning and fault-tolerant design” -
SCORPION) that couples HW/SW codesign with
redundancy techniques to implement speech recognition
systems (SRS).

Due to the specific characteristics of digital signal
processing (DSP) algorithms, these systems deserve special
attention when partitioning the HW and SW parts. Also, in
many applications like voice-oriented bank transactions or
security systems, the need for reliability is also mandatory.
Therefore, the methodology we presented drives the
partitioning of the system in HW and SW parts in such a
way to boost system performance while maintaining area
overhead as low as possible. At the same time, reliability in
terms of redundancy (Consistency Check and Transparent
BIST) was also considered during the implementation of
SRSs. Additionally, a new approach to reconstruct noisy
speech signals was also presented. This approach is
analogous to the hardware technique known as hot standby
sparing, where the main program and its copies are all
running simultaneously. In this scheme, the speech signal
reconstruction is based on real time reconfiguration.

With the purpose of estimating area overhead,
reliability improvement, and speed degradation due to: (a)
the incorporation of fault-tolerant techniques and (b) the use
of specific system partitioning, we conducted a first
laboratory experiment, where we specified an SRS to
recognize 2 words. It was partitioned according to the

proposed methodology. The SW part was compiled to the
target processor (Texas DSP TMS320C67), while the HW
part was implemented in an Altera FPGA
(EPF10K20RC240-4).

The obtained preliminary results indicate that the
area overhead due to the inclusion of the transparent BIST
and the concurrent consistency check (CCC) is negligible
for systems that recognize a vocabulary of 32 words or
more. In addition, performance degradation due to the
periodical execution of the transparent BIST approach was
estimated to be on the order of 46 times more than the time
required to recognize a single word. However, this
condition does not affect the real-time speech recognition
characteristic of the DSP system because it is roughly 10
times faster than traditional SW-based microprocessor
implementations. This condition drives us to the
comfortable position to execute periodical tests of the SRS
with negligible performance penalty, and completely
transparent to the user. Additionally, the CCC technique has
also shown to be extremely affective in avoiding overflow
conditions during MAC operations based on 8-bit length
hardware.

In a second laboratory experiment, we have
simulated in Matlab environment an SRS to recognize 3
words. This simulation aimed at verifying the effectiveness
of the on-line speech signal reconstruction technique we
have proposed. For this 3-word SRS, the obtained results
have shown that the proposed technique is very effective to
reconstruct speech signals when noise affects between 50
and 80 percent of the overall signal.



In the first laboratory experiment we conducted,
the SRS implemented was designed to recognize 2 words,
with a vector codebook storing 66 observation sequence
values per word. This system specification is sufficient to
yield good recognition responses (around 90%, Table 1d).
For future work we will double this parameter to at least 132
observation sequence values per word to be stored in the
vector codebook structure. By doing so, we intend to
increase the SRS degree of success to a value higher than
90% in terms of recognizing the correct words in a larger
vocabulary. However, for vocabularies containing much
more than 2 words the storage area represented by the
vector codebook becomes an important issue. Consequently,
as example of the transparent BIST that is applied to the
local cache memories associated with the pattern matching
& logic decision block, this test approach could also be used
to protect the vector codebook memory structure as well.
This situation deserves a deeper analysis. The next studies
must evaluate in more detail the trade-off between the
system performance degradation versus reliability while
preserving the real time response requirement of the DSP
system applied for larger vocabularies.
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