Sistemas FFH-CDMA Codificados - Parte II: Critério de Projeto

Getúlio A. de Deus Júnior e Jaime Portugheis

Resumo— Sistemas FFH-CDMA codificados possuem um ganho considerável em termos do número de usuários simultâneos quando comparados a sistemas não-codificados. Este artigo propõe um sistema FFH-CDMA codificado cujo receptor trabalha com a regra de máxima verossimilhança para as saídas não quantizadas dos detectores de envoltória. A partir de uma expressão da probabilidade de erro par-a-par para o sistema considerado, um critério de projeto dos codificadores é sugerido. Sendo este critério similar ao utilizado em canais com desvanecimento, codificadores convolucionais existentes na literatura foram utilizados nos sistemas codificados propostos. Os resultados de desempenho obtidos mostraram a eficiência do novo critério de projeto sugerido para os codificadores.

Palavras-chave— Receptores FFH-CDMA, Códigos Convolucionais, Eficiência Espectral.

I. INTRODUÇÃO

EXISTEM dois tipos básicos de técnicas de espalhamento espectral para a implementação de um sistema de comunicação móvel utilizando tecnologia CDMA (do inglês Code Division Multiple Access): técnica de espalhamento por salto em freqüência (sistemas (DS) e técnica de espalhamento por salto em freqüência (sistemas (FH). Os sistemas de acesso múltiplo por divisão de código e salto em freqüência podem ser classificados como sistemas de salto lento SFH-CDMA (do inglês Slow Frequency Hopping Code Division Multiple Access) e sistemas de salto rapido (do finents glês Fast FFH-CDMA). Neste artigo, será considerado um sistema FFH-CDMA descrito em [1] que demonstrou possuir capacidade bem superior à dos sistemas convencionais SFH-CDMA [2].

Este artigo propõe um sistema FFH-CDMA codificado cujo receptor trabalha com a regra de máxima verossimilhança (MV) para as saídas não quantizadas dos detectores de envoltória. A partir de uma expressão da probabilidade de erro par-a-par para o sistema considerado, um critério de projeto dos codificadores é sugerido. Sendo este critério similar ao utilizado em canais com desvanecimento, codificadores convolucionais (CC's) existentes na literatura foram utilizados nos sistemas codificados propostos [4]. Um dos esquemas apresentados em [3], denominado por sistema FFH-CDMA codificado com conversão bit-símbolo forçada, também será considerado neste artigo. Os resultados de desempenho obtidos mostraram a eficiência do novo critério de projeto sugerido para os codificadores.

O artigo está organizado nas seguintes seções: na seção II, é descrito um novo esquema comunicação para o sistema FFH-CDMA considerado; na seção III, é obtido um novo critério de projeto para os codificadores; na seção IV é descrito um sistema FFH-CDMA proposto em [3], denominado sistema FFH-CDMA codificado com conversão *bit*símbolo forçada. Por fim, são apresentados os resultados de simulações para vários sistemas FFH-CDMA codificados.

II. Descrição do Sistema

Consideraremos um sistema FFH-CDMA codificado, onde a comunicação de cada grupo de M usuários com a estação rádio base (ERB) é realizada à uma taxa de R_b bits/s, através do compartilhamento de um mesmo canal de largura de banda igual a W Hz. A modulação utilizada para esta técnica é o chaveamento de deslocamento de freqüências M-ário (MFSK). Cada usuário é identificado através de um endereço local de assinante denominado padrão de salto em freqüência, onde a sua informação transmitida é espalhada sobre toda a faixa W, com uma mesma taxa de fonte R_b . Neste sistema FFH-CDMA, o número de ramos de diversidades L é o número de freqüências por padrão de salto. O intervalo da modulação M-FSK é T e a duração de *chip* (duração de um tom do padrão de salto) é então $T_c = T/L$, com todos os *chips* alinhados no tempo. O número de canais de freqüências é dado por $N = WT_c$ e é igual ao número de freqüências da modulação, M.

A figura 1 apresenta o diagrama de blocos do sistema de comunicação FFH-CDMA codificado proposto. Os componentes básicos são: (a) o gerador de quadros; (b) o bloco de bits de terminação; (c) o codificador; (d) o conversor binário-*m*-ário; (e) o modulador por salto em freqüência (modulação *M*-FSK, *L chips*); (f) o canal com desvanecimento *Rayleigh* seletivo em freqüências (*M* canais independentes) com ruído térmico do receptor e interferência multi-usuário; (g) o demodulador FFH-CDMA; (h) *M* detectores de energia (não coerentes); (i) o decodificador.

Fig. 1. Sistema de Comunicação FFH-CDMA Codificado.

Após o particionamento da fonte de dados na entrada em quadros, contendo cada um n_p bits, são adicionados n_{tail}

Trabalho parcialmente financiado pelo CNPq. Número do processo: 147458/99-4. E-mail dos autores: (getulio, jaime)@decom.fee.unicamp.br

bits de terminação do código. Assim, na saída do codificador teremos $n_{cod} = (n_p + n_{tail})/R_{CO}$ bits codificados por quadro, onde R_{CO} é a taxa do CC. A representação (nn, kk, m) para um CC indica um código com kk bits em sua entrada, nn bits em sua saída e um número de registradores igual à m. Deste modo, a taxa do CC é $R_{CO} = kk/nn$.

Para um mapeamento casado com o número de freqüências do modulador, n_{cod} deverá ser divisível por $k = \log_2(M)$, sendo o número de símbolos, n_{sym} , dado por $n_{sym} = n_{cod}/k$.

A taxa efetiva do código convolucional, $R_{CO}^{(eff)},$ neste caso será dada por:

$$R_{CO}^{(eff)} = \frac{n_p}{n_{cod}} = \frac{n_p}{(n_p + n_{tail})/R_{CO}}.$$
 (1)

O modulador FFH aceita um símbolo M-ário, $m \in \{0, 1, \ldots, M-1\}$ e, na saída, temos um sinal obtido através da combinação de NL formas de onda de uma base:

$$s_m(t) = \sum_{n=0}^{N-1} \sum_{l=0}^{L-1} c_{nl} x_{nl}(t), \qquad (2)$$

onde $c_{nl} = 1$ para um n = m e $c_{nl} = 0$ para $n \neq m$. A forma de onda $x_{nl}(t)$ utilizada pelo transmissor é dada por:

$$x_{nl}(t) = \sqrt{2S} \operatorname{rect}_{T_c}(t - lT_c) \cos(2\pi [f_0 + n/T_c]t), (3)$$

onde f_0 é um múltiplo de $1/T_c$ e $rect_{T_c}(t)$ é um pulso retangular de amplitude unitária e de duração T_c .

O modulador FFH de salto em freqüência muda a freqüência em cada *chip* de $s_m(t)$ antes da transmissão, de acordo com a *L*-upla do endereço do usuário. Os padrões de salto em freqüência não serão abordados neste artigo, mas todas as *L* freqüências das saídas são distintas [1]. Deste modo, a duração de um *chip* é relacionada com R_b através de

$$R_b = \frac{k}{LT_c} R_{CO}^{(eff)},\tag{4}$$

onde $R_{CO}^{eff} = 1$ para um sistema FFH-CDMA nãocodificado [5].

O espaçamento entre *chips* vizinhos ortogonais é $1/T_c$. Assim, a eficiência espectral η é dada por:

$$\eta = U \ \frac{k}{LM} \ R_{CO}^{(eff)},\tag{5}$$

onde U = J + 1 é o número total de usuários simultâneos no canal e J é o número de interferentes.

A energia média por *chip* pode ser calculada por

$$E_c = E_b R_{CO}^{(eff)} \frac{k}{L}.$$
 (6)

onde E_b é a média de energia recebida por *bit* de informação. Deste modo, o recíproco da relação sinal-ruído por *chip*, d, é dado por:

$$d = \frac{N_0}{E_c} = \frac{L}{kR_{CO}^{(eff)}} \left(\frac{E_b}{N_0}\right)^{-1}.$$
 (7)

No receptor, existem NL detectores não-coerentes de energia, cada um consistindo de dois filtros casados cujas saídas são amostradas, elevadas ao quadrado, e somadas. Deste modo, a nl-ésima saída do detector de energia é dada por:

$$R_{nl} = X_{nl}^2 + Y_{nl}^2, (8)$$

onde $X_{nl} \in Y_{nl}$ são as componentes em fase e em quadratura do sinal recebido [1], [5].

A função densidade de probabilidade $p(R_{nl}|m)$ será então dada por:

$$p(R_{nl}|m) = \sum_{k=0}^{J} \frac{B(k; J, \mu)}{k+d+\delta_{nm}} \exp[-\frac{R_{nl}}{k+d+\delta_{nm}}], (9)$$

onde $\mu = 1/M$, δ_{nm} é o delta de Kronecker e $B(k; j, \mu) = \begin{pmatrix} J \\ k \end{pmatrix} \cdot \mu^k \cdot (1 - \mu)^{J-k}.$

III. CRITÉRIO DE PROJETO DOS CÓDIGOS

Para obtermos um novo critério de projeto dos códigos, iremos considerar o canal visto pelo codificador convolucional que é modelado pelas densidades da equação 9. Seja $\mathbf{m} = (\mathbf{m}_0, \ldots, \mathbf{m}, \ldots, \mathbf{m}_{n_{sym}-1})$ uma seqüência de símbolos de comprimento n_{sym} , correspondente a uma seqüência de saída do codificador, e $\mathbf{R} = (\mathbf{R}^0, \ldots, \mathbf{R}^i, \ldots, \mathbf{R}^{n_{sym}-1})$ uma seqüência recebida. Desde que as saídas dos detectores de energia R_{nl} são estatisticamente independentes, podemos escrever a densidade conjunta $p(\mathbf{R}|\mathbf{m})$ como:

$$p(\mathbf{R}|\mathbf{m}) = \prod_{i=0}^{n_{sym}-1} \prod_{n=0}^{N-1} \prod_{l=0}^{L-1} p(R_{nl}^{i}|m_{i}), \qquad (10)$$

onde R_{nl}^i é a saída R_{nl} da *i*-ésima matriz recebida.

Sendo assim, a regra de máxima verossimilhança (MV) para seqüências de símbolos é: escolha \mathbf{m} se

$$p(\mathbf{R}|\mathbf{m}) > p(\mathbf{R}|\mathbf{q}), \ \forall \ (\mathbf{q} \neq \mathbf{m}).$$
 (11)

Como em [1], podemos usar o fato de que não somente para m = q, mas também para $n \neq m \neq q$, $p(R_{nl}|m) = p(R_{nl}|q)$. Assim, a regra de MV é equivalente a:

$$\prod_{i \in \mathcal{A}} \prod_{l=0}^{L-1} \frac{p\left(R_{ml}^{i}|m_{i}\right)}{p\left(R_{ml}^{i}|q_{i}\right)} >$$

$$\prod_{i \in \mathcal{A}} \prod_{l=0}^{L-1} \frac{p\left(R_{ql}^{i}|q_{i}\right)}{p\left(R_{ql}^{i}|m_{i}\right)},$$
(12)

onde o conjunto A representa os índices i com símbolos distintos e a cardinalidade do conjunto A é ξ .

Definindo $Z(\mathbf{m})$ ($Z(\mathbf{q})$) como o lado esquerdo (direito) da equação 12, podemos calcular a probabilidade de erro par-a-par através da expressão:

$$Pr[Z(\mathbf{m}) - \mathbf{Z}(\mathbf{q})|\mathbf{m}] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\Phi_{MV}^{(L \cdot \xi)}(s)}{s} dw, (13)$$

onde $s = \alpha + jw$ e $\Phi_{MV}(s)$ é a função característica do receptor FFH-CDMA não-codificado de máxima verossimilhança [5].

A equação (13) mostra que a probabilidade de erro para-par não depende de $\mathbf{m} \in \mathbf{q}$, mas apenas de $L \in \xi$. Seja ξ_{\min} o menor valor de ξ para todos os possíveis pares de seqüência \mathbf{m} , \mathbf{q} ($\mathbf{m} \neq \mathbf{q}$). Fixando L, podemos sugerir como critério de projeto:

para códigos de mesma taxa e mesma complexidade, escolha aquele que possui o maior valor de ξ_{\min} .

Se fizermos a analogia dos sinais na saída P\$fragofallatements 1010 FFH-CDMA, $S_{m_i}(t)$, com sinais de um sistema de modulação digital codificada, é fácil notar que o critério proposto é equivalente ao critério de projeto para canais com desvanecimento, onde ξ é substituído pelo comprimento efetivo entre seqüências (ECL - do inglês: Effective Code Length) frag replaçements 1000

> Deste modo, buscamos na literatura especializada, o CC $(5,4,4)^{r_4}_{r_4}$ otulado por F_4 , que atende a esse critério de projeto $[4f^{2n}_{r_4}$ Este CC possui taxa $R_{CO} = 4/5$ e m = 4. Originalmente, o codificador para o CC F_4 foi obtido de [4] na sua forma realimentada, conforme é mostrado pela figura 2(a). y^n_n y^n_n

replacements

Fig. 2. (a) Codificador Convolucional F_4 obtido na sua forma original (codificador com realimentação) e (b) Codificador Convolucional F_4 convertido da forma original (codificador na forma direta).

Entretanto, pode-se obter o codificador equivalente dado na sua forma direta utilizando a técnica de conversão dada em [6]. A figura 2(b) apresenta o codificador equivalente obtido na sua forma direta que será utilizado neste artigo.

O diagrama de treliça para o CC (5,4,4), F_4 , de interesse particular, é mostrado na figura 3. Observe que o ECL do CC F_4 é igual à 2. Vale ressaltar nesta escolha, conforme o critério de construção do código, quanto maior o ECL do código escolhido, melhor será o desempenho para o sistema FFH-CDMA codificado.

Fig. 3. Diagrama de treliça para o código convolucional F_4 .

IV. SISTEMA FFH-CDMA CODIFICADO COM Conversão Bit-Símbolo Forçada

Em [3] é apresentado um sistema FFH-CDMA codificado que utiliza uma conversão bit-símbolo forçada. A figura 4 apresenta o diagrama de blocos do transmissor. Note que foi necessário uma introdução de dois novos blocos no diagrama do transmissor: (a) um embaralhador de *bits*; (b) um bloco de *bits* de preenchimento. O embaralhador é necessário devido à correlação entre os *bits* introduzida pelo codificador. A introdução de n_{st} *bits* de preenchimento é necessária, pois neste caso, na maioria dos códigos utilizados neste esquema de codificação, não teremos uma perfeita conversão entre os n_{cod} *bits* que saem do codificador. Note que agora $n_{cod} = (n_p + n_{tail})/R_{CO} + n_{st}$. Deste modo, a taxa efetiva do código (equação (1)) será dada por

$$R_{CO}^{(eff)} = \frac{n_p}{(n_p + n_{tail})/R_{CO} + n_{st}}.$$
 (14)

V. Decodificação

A. Métrica para um Sistema FFH-CDMA que utiliza o Novo Critério de Construção dos Códigos

Os receptores FFH-CDMA implementados utilizam na decodificação o algoritmo de *Viterbi* [9]. Deste modo, o decodificador é implementado através do diagrama de treliça do CC. Para os sistemas FFH-CDMA que utilizam o

Fig. 4. Diagrama de Blocos do transmissor para um codificador convolucional que utiliza uma conversão bit-símbolo não casada.

novo critério de construção dos códigos (seção III), cada uma das M métricas dos ramos, associadas à uma seção da treliça e, que serão utilizadas pelo algoritmo de *Viterbi*, pode ser obtida da equação (10) e será dada por:

$$M(\mathbf{R}|\mathbf{m}) = \log \left[\prod_{n=0}^{N-1} \prod_{l=0}^{L-1} p(R_{nl}|m)\right],$$

=
$$\sum_{n=0}^{N-1} \sum_{l=0}^{L-1} \log [p(R_{nl}|m)], \quad (15)$$

onde $m \in \{0, ..., M - 1\}.$

Utilizando as mesmas simplificações que levaram à equação 12, as métricas dos ramos podem ser obtidas como:

$$M(\mathbf{R}|\mathbf{m}) = \sum_{l=0}^{L-1} f(R_{ml}),$$
 (16)

onde $m \in \{0, \ldots, M-1\}$ e $f(\cdot)$ é a não linearidade dada em [1], [5]. Vale ressaltar que, as métricas equivalentes de (16) calculam apenas L somas (em vez de NL somas como em (15) e que a não linearidade pode ser implementada pelo mesmo *perceptron* sugerido em [5].

B. Métrica para um Sistema FFH-CDMA codificado com Conversão Bit-Símbolo Forçada

Para o sistema FFH-CDMA codificado com conversão bit-símbolo forçada (seção IV), a métrica do ramo utilizada em [3] é obtida como segue. Seja m um símbolo específico transmitido. Este símbolo pode ser convertido em k bits, representados pela k-upla $\mathbf{b} = (\mathbf{b}_{k-1}, \ldots, \mathbf{b}_1, \mathbf{b}_0)$, que é mapeada através de $m = \sum_{j=0}^{k-1} b_j 2^j$, com m = $\{0, 1, \ldots, M-1\}$. Seja também \mathbf{R} a matriz recebida pelo decodificador. Deste modo, a probabilidade *a posteriori* $p(m|\mathbf{R})$ é dada por:

$$p(m|\mathbf{R}) = \frac{p(\mathbf{R}|\mathbf{m})}{\sum_{\tilde{\mathbf{m}}=0}^{M-1} p(\mathbf{R}|\tilde{\mathbf{m}})}.$$
 (17)

A probabilidade *a posteriori* do *j*-ésimo bit codificado, $p_0 (b_j = 0 | \mathbf{R})$, será dada por:

$$p_0(b_j = 0|\mathbf{R}) = \sum_{r=0}^{(M/2)-1} p(m|\mathbf{R}),$$
 (18)

onde $m = r \lfloor \frac{r}{2^j} \rfloor \cdot 2^j$ e $\lfloor (\cdot) \rfloor$ denota o menor inteiro menor ou igual a (\cdot) , com $j = \{0, 1, \dots, k-1\}$. Seja p um símbolo associado ao ramo na treliça de decodificação do sistema FFH-CDMA codificado com conversão bit-símbolo forçada, representado pela k-upla $\mathbf{a} = (\mathbf{a}_{k-1}, \ldots, \mathbf{a}_1, \mathbf{a}_0)$. Deste modo, a métrica do ramo neste caso, poderá ser expressada como

$$M(\mathbf{R}|\mathbf{m}) = \sum_{i=0}^{k-1} \log [m(\mathbf{R}|\mathbf{m}, \mathbf{p})],$$
 (19)

onde $m(\mathbf{R}|\mathbf{m},\mathbf{p}) = \mathbf{p}_0(\mathbf{R}|\mathbf{b}_j = 0)$, caso $a_j = 0$ e $m(\mathbf{R}|\mathbf{m},\mathbf{p}) = 1 - [\mathbf{p}_0(\mathbf{R}|\mathbf{b}_j = 0)]$, caso $a_j = 1$.

Vale ressaltar ainda que tanto as probabilidades *a posteriori*, $p_0 (b_j = 0 | \mathbf{R})$, bem como as probabilidades condicionadas, $p_0 (\mathbf{R} | \mathbf{b}_j = 0)$, diferenciam-se apenas por uma constante numérica, se os bits codificados são igualmente prováveis. Portanto, ambas as probabilidades poderão ser utilizadas no cálculo das métricas dos ramos do algoritmo de decodificação.

VI. SIMULAÇÃO E RESULTADOS OBTIDOS

Consideraremos uma transmissão com quadros de duração de 20 ms. A taxa de transmissão de dados é de 9,6 kb/s. Deste modo, o total de bits para a fonte de dados é de $n_p = 192 \ bits/quadro$. A tabela I apresenta os parâmetros de projeto dos codificadores considerados neste artigo. O codificador CC_1 possui geradores 133:171 (octal). Ambos os codificadores F_4 e F_5 possuem comprimento efetivo ECL = 2.

Tabela I Parâmetro de Projeto para os Sistemas FFH-CDMA através dos Códigos Convolucionais, $n_p = 192$.

Rótulo	CC	n_{tail}	n_{st}	n_{cod}	n_{sym}	$R_{CO}^{(eff)}$
CC_1	(2,1,6)	6	4	400	80	0,480
F_4	(5,4,4)	4	-	245	49	0,784
F_5	(5,4,5)	5	-	250	50	0,768

A figura 5 mostra o comportamento da probabilidade de erro de *bit* em função da eficiência espectral para um sistema FFH-CDMA com $2^k = 32$, L = 6 e $\frac{E_b}{N_0} = 25 dB$. Os símbolos nas curvas denotam U (número de usuários simultâneos) com passo unitário. O desempenho de um sistema não-codificado com mesmos parâmetros também é mostrado.

Na figura são comparados quatro sistemas que utilizam os codificadores da tabela I. O primeiro sistema utiliza o codificador CC_1 (que necessita da conversão bit-símbolo forçada) foi simulado com a métrica de decodificação da equação (19). Para $P_b = 10^{-3}$, o aumento em eficiência espectral provido por este sistema é relativamente pequeno. CC_1 é um código de taxa 1/2 e possui 64 estados em sua treliça, ou seja, possui uma complexidade de decodificação de $2^1 \times 64 = 128$ comparações por seção da treliça. O segundo sistema utiliza o codificador F_4 e foi também simulado com a métrica da equação (16). Comparando

Fig. 5. Curvas de desempenho dos sistemas FFH-CDMA codificados com parâmetros $2^k = 32$, L = 6 para $\frac{E_b}{N_0} = 25 dB$. Os números nas curvas denotam U.

com o desempenho do primeiro sistema, o aumento adicional em eficiência espectral alcançado ainda é relativamente pequeno (para a mesma P_b). Note que F_4 possui complexidade de $2^4 \times 16 = 256$ comparações por seção da treliça. Entretanto, o terceiro sistema, que utiliza o mesmo codificador F_4 e a métrica ótima da equação (16), demonstrou possuir um aumento adicional significativo em eficiência espectral $(P_b = 10^{-3})$. Vale a pena salientar que a métrica da equação (16) possui implementação bem mais simples que a da equação (19). Finalmente, o quarto sistema, que utiliza o codificador F_5 e a métrica ótima mas possui o mesmo comprimento efetivo de F_4 , não apresenta aumento adicional em eficiência significativo. Note que F_5 possui complexidade de $2^4 \times 32 = 512$ comparações por seção da treliça. Da comparação dos quatro sistemas descritos no parágrafo anterior podemos verificar: a)a importância de uma conversão bit-símbolo casada com o número de freqüências do modulador; b)a importância do uso da métrica ótima da equação (16) e c) a importância do parâmetro ECL, como primeiro parâmetro a ser otimizado no projeto do sistema codificado.

A figura 5 também mostra valores de eficiência máxima que poderiam ser atingidos por sistemas codificados trabalhando na taxa de corte R_0 do sistema. Estes valores são obtidos substituindo-se na equação (5) o número de usuários simultâneos U pelo valor de U correspondente à R_0 , como foi descrito em [5]. Pode-se observar que os sistemas propostos ainda trabalham distantes da eficiência prevista por R_0 .

VII. CONCLUSÕES

Este artigo considerou um sistema FFH-CDMA cujo receptor utiliza as saídas não quantizadas, R_{nl} , dos detectores de energia. Em [5] foi proposta uma implementação com um único perceptron da função $f(R_{nl}$ utilizada na métrica da equação (16). Também em [5], mostrou-se os ganhos de capacidade previstos pela taxa de corte do receptor não quantizado. Estes resultados motivaram a sugestão de sistemas FFH-CDMA codificados descritos neste artigo. Deste modo, um novo critério de construção de códigos foi considerado. Os resultados de simulação indicaram a importância de uma conversão bit-símbolo casada, do uso da métrica ótima da equação (16) e do parâmetro ECL como primeiro parâmetro a ser otimizado no projeto do sistema codificado. Os resultados de simulação comprovaram, portanto, a eficiência do novo critério.

Referências

- O. Yue, "Maximum Likelihood Combining for Noncoherent an Differentially Coherent Frequency-Hopping Multiple-Access Systems," *IEEE Trans. on Information Theory*, v.IT-28, n.4, Jul 1982.
- [2] J. G. Goh e S. V. Marió, "The Capacities of Frequency-Hopped Code-Division Multiple-Access Channels," *IEEE Trans. on Information Theory*, v.44, n.3, May 1998.
- [3] U. Fiebig e P. Robertson, "Soft-Decision and Erasure Decoding in Fast Frequency-Hopping Systems with Convolutional, Turbo, and Reed-Solomon Codes," *IEEE Trans. on Communications*, v.47, n.11, Nov. 1999.
- [4] J. Du, Y. Kamio e B. Vucetic, "New 32-QAM trellis codes for fading channels," *Eletronics Letters*, v.29, n.20, Sep 1993.
- [5] G. A. de D. Jr. e J. Portugheis, "Sistemas FFH-CDMA Codificados - Parte I: Capacidade e Taxa de Corte," XIX Simpósio Brasileiro de Telecomunicações, artigo submetido à publicação.
- [6] J. E. Porath, "Algorithms for Converting Convolutional Codes from Feedback to Feedforward form and Vice Versa," *Eletronics Letters*, v.25, n.15, p.1008-1009, Jul., 1989.
- [7] J. G. Proakis, "Digital Communications" McGraw-Hill, 1995.
- [8] D. J. Goodman, P. S. Henry, e V. K. Prabhu, "Frequency-Hopped Multilevel FSK for Mobile Radio," B.S. T.J., v.59, n.7, p.1257-1275, Sept., 1980.
- [9] S. Lin and A. J. Costello, Jr., "Error Control Coding Fundamentals and Applications," Prentice-Hall, 1983.