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Abstract— A new Markovian model (MM) for burst-error
generation has been recently presented by the authors. This
model is conveniently structured, with the double purpose of
reproducing the generation of some typical patterns of burst
error sequences and facilitating the maximum-likelihood (ML)
estimation of the its parameters. In the present work we show
that this model also turns out to be useful for obtaining simple
expressions for several statistics of great interest in thecontext
of modeling and performance evaluation of communications
systems degraded by burst-errors. So we propose to use these
analytical expressions fulfilled with ML estimates of the model
parameters in order to obtain good models for the above
mentioned statistics. Some numerical results are presented that
illustrate the effectiveness of this approach.
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I. I NTRODUCTION

The investigation of tools for evaluating the impact of
burst errors on the performance of networks, by means of
analysis and simulation, has been a field of great interest
over the last decades [1].

The search for simple models with the ability to reproduce
important statistics of the error processes is an issue of
utmost importance in this context. Markov Models (MM)
and Hidden Markov Models (HMM) have been frequently
adopted for this aim.

Hidden Markov Models (HMM) have also been success-
fully applied to satellite and wireless communications [1]–
[4]. Besides, simple HMM such as the Gilbert-Elliot model
have been shown to be useful for performance analysis,
not only to evaluate the impact of errors generated in the
physical layer, but also in regard of the errors produced in
higher layers [1].

In spite of the widespread interest in using Markov
models for burst-error processes, several works have pointed
out some limitations of these approaches, specially for
frequently requiring the increase in the number of states in
order to fit well some desired burst-error statistics [5]. This
increase may lead to an unfeasible number of parameters
to be adjusted, eliminating this way the main advantage of
those models.

Some recent works have been devoted to improvements
in Markovian channel models, by proposing moderate in-
creases in the model complexity, such as the use of hier-
archical models [6], [7] and the so-called bipartite models
[8].

A new way to circumvent some usual limitations of the
Markovian approach for burst channel modeling without
any sacrifice of simplicity was proposed by the authors
in [9]. Our basic idea consists of imposing a convenient
structure to the Markov channel model, inspired in some
usual mechanisms of burst error generation. This structureis
conceived in such a way that the number of parameters to be
estimated is decoupled from the order of the MM. Besides,
the derivation of analytical expressions for ML estimation
of those parameters is facilitated.

In the present paper we show that this model is also
appropriate for analytical modeling of several statisticsof
burst error processes. We present the analytical expressions
of some statistics of great interest and show that these
expressions may be used jointly with ML estimates of the
model parameters in order to easily provide descriptive
models of burst errors. Numerical results here presented
show the effectiveness of this approach.

This paper has 6 sections. The proposed model is sum-
marized in Section II. The maximum likelihood estimation
of its parameters is dealt with in section III. The analysis
of some useful distributions in the context of burst error
investigation is the subject of section IV. Numerical results
are given is section V. Finally, our findings are summarized
in section VI.

II. STRUCTURED MARKOV MODEL

An error sequence is initially represented as a finite
sequence of ones and zeros associated with correct and error
events, respectively. A gap (cluster) of lengthn is defined
as a group ofn consecutive zeros (ones) between two ones
(zeros).

The proposed model is illustrated in Fig. 1. It is composed
of L+3 states and split in two sub-models namedlength-
limited gaps and length-unlimited gaps.
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Fig. 1. Proposed model

Despite this nomenclature, the above mentioned sub-
models may be involved in the generation of both gaps and
clusters, with the basic difference that the gaps generated
within the first sub-model are limited in length to a maxi-
mum ofL−1. The states directly involved in the generation
of such gaps (e4, e5, . . ., eL+2) comprise the group that is
calledgap generation I in Fig. 1.

On the other hand, unrestricted-in-length gaps may be
generated by the so calledlength-unlimited gaps sub-model.
In particular, gaps of any length may be originated from
a number of self-transitions of statee1. Besides, gaps of
lengths equal to or greater thenL may also be generated
within the group namedgap generation II in Fig. 1, which
is composed by statese1 ande2.

In respect of the generation of clusters in thelength-
unlimited gaps sub-model, it is worth noticing that any
cluster’s length may be obtained with transitions toe0 and
its self-transitions. Clusters of unrestricted length mayalso
be generated within the other sub-model, with transitions to
statee3 followed by self-transitions.

There are significant differences in the roles played by
statese0 and e3 in the generation of error sequences. In
particular, it should be noted that statee3 is more closely
connected with both the mechanisms for producing gaps
(gap generation I and gap generation II in Fig. 1) and in
this sense it connects the sub-models of length-limited and
length-unlimited gaps. On the other hand,e0 is a cluster-
generating state with a direct connection to the groupgap
generation II only. In order to highlight the differences in the
generation of clusters by statese3 and e0, they are labeled
cluster generation I and cluster generation II, respectively,
in Fig. 1.

III. ML ESTIMATION

We collect the 7 parameters of the model in the vectorθ ,

(α,β ,δ ,λ ,µ ,ρ ,L) and assume that the observation starts
with an error. This observation is regarded as a sequence

of K + 1 pairs of clusters and gaps. It is represented by
the vectorn , (n0,n1, · · · ,n2K ,n2K+1), wheren2k andn2k+1
denote the lengths of the cluster and the gap in the(k+1)-th
pair, respectively.

We also define for convenience the auxiliary function
γt(i) , P(n0,n1, · · ·n2t ,n2t+1), for t ∈ {0,1, · · ·K}, which is
the probability of occurrence of the firstt + 1 cluster-gap
pairs. It can be recursively calculated as follows:

γt(i) = ∑
j∈{0,3}

γt−1( j)P[n2k,n2k+1,ei|e j], (1)

whereP[n2k,n2k+1,ei|e j] denotes the conditional probability
of emitting a gap of lengthn2k followed by a cluster of
length n2k+1 and being after that at stateei, given that the
model was in statee j before these emissions.

By analyzing the model in Fig. 1 we obtained the follow-
ing expressions, after some manipulations:

P[ng,nc,e0|e0] = µδ ng−1λ (1− µ)nc−1

P[ng,nc,e3|e0] = µδ ng−1(1− δ −λ )αnc−1

P[ng,nc,e0|e3] =

{

0, ng < L;

ηδ ng−Lλ (1− µ)nc−1, ng ≥ L.

P[ng,nc,e3|e3] =











β ρng−1(1−ρ)αnc−1, ng ≤ L−2;

β ρL−2αnc−1, ng = L−1;

ηδ ng−L(1−α −λ )αnc−1, ng ≥ L,

(2)

beingη = 1−α −β .
The likelihood function may be expressed as

V (θ ), ∑
i∈{0,3}

γK(i;θ ), (3)

where the dependence ofγK(.) with θ has been made
explicit for the sake of clearness.
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This form of calculating the ML metrics is one important
advantage provided by the proposed model. As the vector
θ contains a discrete parameter (L), the ML estimation is
performed in two main steps. InitiallyV (θ ) is maximized
in the continuous parameters for fixed values ofL taken
in a large pre-established set. The best estimates of the
continuous elements ofθ , as well as the corresponding
values of the objective function are retained in this phase.
The second step consists on searching for the best value of
the objective function among those previously retained, in
order to arrive to the ML estimate ofθ .

IV. A NALYTICAL EXPRESSIONS FOR THESTATISTICS OF

INTEREST

Besides its advantages for facilitating ML estimation, the
model in Fig.1 also provides easy mathematical analysis of
statistics of great interest in the context of burst channel
investigation.

We adopt the CCITT definition of burst [10], which states
that an error burst is a group of bits that starts and ends with
a “1” in which the number of contiguous “0” is less than
a maximum number that is here calledinterburst threshold
and is denoted byX . An error-free burst is defined as a
sequence of zeros with length great or equal toX .

We focus on the four statistics defined below. For the sake
of clearness in the presentation of our numerical results in
the following section, the definitions of these statistics were
slightly changed but we maintained the usual nomenclature
of [5], as follows:

• gap distribution (GD) - the complementary cumulative
distribution of gap lengthsG, P(G ≥ m). A gap (G) of
an error sequence is defined as a run of the consecutive
zeros between two ones and has a length equals to the
number of consecutive zeros;

• error cluster distribution (ECD) - the complementary
cumulative distribution function of cluster lengthsC,
P(C ≥m). A cluster (C) of an error sequence is defined
as a run of the consecutive ones between two zeros and
has a length equals to the number of consecutive ones;

• error-free run distribution (EFRD) - defined as the con-
ditional probability of the occurrence ofm consecutive
error-free bits, given a previous occurrence of an error,
which we denote byP[0m|1];

• error-free burst distribution (EFBD) - the complemen-
tary cumulative distribution of error-free burst lengths
EFB, P(EFB ≥ m). An error-free burst is a gap of
length greater than or equal to a predefined parameter
L;

For obtaining the gap distribution, it is enough to have
an expression for the probability of the occurrence of an
amountm of correct decisions in between two errors, which
we denote byP[10m1]. By analyzing the model in Fig. 1 it
may be verified that

P[10m1] = x0µ(1− δ )δ m−1+ x3D, (4)

where

D =















β (1−ρ)ρm−1, m ∈ {1,2, . . . ,L−2}

β ρL−2, m = L−1,

(1−α −β )(1− δ )δ m−L, m ≥ L

(5)

The parametersxk for k = 0,1,2, ...,L+ 2 represent the
steady-state values of the state probabilities.

Using the above expression, the probability of a gap of
lengthm may be expressed as

P[G = m] =
P[10m1]

µx0+(1−α)x3
, m ≥ 1. (6)

In a similar way, the probability of a cluster of lengthm
may be shown to be given by

P[C = m] =
P[01m0]

µ(1− δ )x0/λ +β x3
(7)

=
x1(1− δ )+β x3

µx0+(1−α)x3
,m ≥ 1. (8)

The probability of an error-free burst of a given
length m ≥ X may be expressed asP(EFB = m) =
P(G = m)/P(G ≥ m). Using (4), it may be verified that

P(EFB = m) =
P[10m1]

µδ X−1x0+(1−α −β )δ X−Lx3
. (9)

Finally, the conditional probability of occurringm error-
free decisions, given the previous occurrence of an error,
may be verified to be given by

P[0m|1] =







F+x3[(1−α−β )+β ρm−1]
x0+x3

, m < L
F+x3(1−α−β )ρm−1

x0+x3
, m ≥ L,

(10)

whereF = x0µδ m−1.

V. RESULTS

We have evaluated the ability of the proposed model to
capture the statistical properties of target error sequences
produced in a typical scenario of burst error generation,
namely the transmission over flat-fading channels.

In more specific terms, we have modeled error sequences
obtained by simulation of the transmission of PSK-4 mod-
ulated signals over time-varying Rayleigh channel with
Doppler spectrum modeled by the Jakes’ model and nor-
malized maximum Doppler shift of 10−1. The Eb/N0 ratio
was fixed at 10 dB and perfect phase synchronization in the
receiver was assumed.

After performing the ML estimation of the proposed-
model parameters we have applied the analytical expressions
of the four statistics of interest and compared the results
so obtained with their counterparts empirically obtained
from the original data sequence. The curves so obtained



The 7th International Telecommunications Symposium (ITS 2010)

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

gap size g

G
D

  P
(G

 ≥
 g

)

 

 

Original
Analitic

Fig. 2. Gap distribution (GD).
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Fig. 3. Error cluster distribution (ECD).

are respectively named ”‘analytical”’ and ”original”’ in the
following.

Fig. 2 shows the estimate of the gap distribution produced
by the proposed model with the analytical expressions and
the estimated values of its parameters, as well as that
obtained with the original data. An almost perfect agreement
between these estimates is observed.

A similar behavior may be observed in Fig. 3, that shows
the results obtained in the estimation of the error cluster
distribution.

Fig. 4 shows the results obtained for the error-free run
distribution. A very good agreement between the analytical
curve ant that obtained from the original data may be
observed once again.

Finally, Fig 5 shows the results obtained for the error-
free burst distribution. The interburst thresholdX has been
set to the ML estimate ofL, which was 10 in this case.
An excellent adjustment between the curve obtained by
analysis and ML estimation of the model parameters and
that obtained from the original data is shown once more.

Summarizing, the above shown figures indicate that the
use of the ML estimates of the parameters of the model pro-
posed in [9] within the analytical expressions here derived
for the statistics under consideration produces very good
fittings to the corresponding estimates calculated from the
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Fig. 4. Error-free run distribution (EFRD).
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Fig. 5. Error-free burst distribution (EFBD).

original error data.

VI. CONCLUSION

The modeling of several statistics of interest in the context
of burst error investigation has been here performed, taking
as a tool the structured Markovian model for burst-error
channel proposed in [9]. This model is specially structured
for reproducing the generation of typical patterns of burst-
error sequences and has only 7 parameters to be adjusted,
irrespective of its number of states. Simple expressions for
those statistics have been derived and have been proposed
to be applied jointly with ML estimates of the model pa-
rameters in order to obtain descriptive models of burst error
statistics of interest for performance investigation purposes.
Numerical results showed that this approach is effective.
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