
APPLYING COMPONENTWARE IN DISTRIBUTED
NETWORK AND TELECOMMUNICATION SERVICES
MANAGEMENT THROUGH JAVA TECHNOLOGIES

E. Yanaga, L. Nacamura Jr.

Centro Federal de Educação Tecnológica do Paraná – CEFET-PR
Programa de Pós-graduação em Engenharia Elétrica e Informática Industrial – CPGEI

Centro de Pesquisa e Desenvolvimento em Tecnologia de Telecomunicações – CPDTT
Laboratório de Sistemas Distribuídos – LASD

Curitiba – Paraná – Brazil

ABSTRACT
The constantly evolving requirements of the telecommunication
services market and their management systems demand new
approaches that guarantee the scalability, robustness, and
flexibility of network management systems. In addition, the new
approaches must also provide cost and time reduction of the
systems’ development process. We believe that a
componentware approach applied to distributed management
can address all of these aroused needs. Java has been
increasingly utilized in the development of management
systems, and it provides some key technologies that make it
feasible for the implementation of a component-based
distributed management system. In this paper we will present the
application of the componentware approach in distributed
network and telecommunication services management through
Java technologies such as Enterprise JavaBeans, and Java
Management eXtensions.

1. INTRODUCTION

The recent changes introduced by the wireless world, the demand
for the creation of new telecommunication services and the
networks’ size growth present new challenges to the network and
systems management. With the new service-driven age now
dawning [9], there are some crucial requirements that traditional
management paradigms cannot satisfy.

Historically, there has been some time since people started
questioning about the Simple Network Management Protocol
(SNMP), the Common Management Information Protocol
(CMIP), and their underlying paradigms. In the past few years,
the management community started demanding strongly
distributed management technology for mainly two reasons.
First, strongly distributed management paradigms address some
of the major shortcomings of traditional paradigms: beyond mere
interoperability, they offer scalability, flexibility and robustness
[3]. These three features, identified by Goldszmidt to motivate
the use of his own model, Management by Delegation (MbD),
can actually justify the use of any kind of strongly distributed
management technology. Second, much progress was made in
software engineering since CMIP and SNMP were devised, and
new technologies suggested new ways of doing network and
systems management [7].

One of the latest focuses in the software engineering area is
Component-Based Software Development (CBSD) or
componentware. The need for implementation of new
telecommunication services currently represents a survival factor
for companies in this competitive market. The emerging
requirements for the development of these services and their
management systems demand well established approaches that
guarantee the system’s robustness, dynamic extensibility,
expandability, economy of the development process (through
software reuse), and a fast time to market. All of these key
features, needed in the next generation network management, can
be addressed by the componentware approach.

Our ultimate goal is to provide a component-based distributed
management architecture that can meet the constantly evolving
requirements of network and services management systems. We
consider that Java and its self-contained technologies have some
key features that are appropriate for the implantation of the
component-based architecture.

This paper is structured as following: Section 2 presents the
distributed management concepts and describes its advantages.
Section 3 introduces the componentware approach and describes
possible manners of implementing it over manager and agent
entities. Section 4 provides a description of some Java
technologies suitable for the application of componentware in
network management systems. Section 5 pictures our proposed
architecture for component-based distributed network
management system, and Section 6 ends our description with
some conclusions.

2. DISTRIBUTED MANAGEMENT

The development of network management systems traditionally
encompasses two groups of entities in different roles: managers
and agents. Managers usually have been software systems
running on powerful workstations, responsible for the processing
and visualization of the network management data. Agents
traditionally have been entities responsible for the collection of
this data. Given the different nature of these entities, it is
expected that the evolution of the paradigms behind these entities
to be leveraged by different technologies.

The term “distributed management”, in our view, has to be
applied differently when referring to manager or agent entities.
Distributed management applied to the development of

management applications (managers) means that there is not only
one or a couple of powerful network management stations
responsible for the processing of management tasks. Rather than
that, and differently from weakly distributed hierarchical
paradigms [7] such as TMN, we should consider that the network
itself is a pool of services provided by different servers whose
location is irrelevant. Management components cooperate with
one another across the network to provide distributed, scalable
management functions. This dynamic and distributed architecture
is accomplished through modern N-tier architectures where each
layer provides a different functionality.

The role of agent entities in a distributed management framework
is leveraged from simple passive dumb data collectors to active
entities in the network management process. This idea, first
presented by Goldzmidt [3], incorporates robustness, flexibility,
and increased scalability to network management. With large
scale distributed management, we have the spatial distribution of
the system code, allowing the information processing to be
nearer the data it works on – reducing the bandwidth needed to
perform management tasks. Moreover, we have an added
flexibility in the system, since it is now possible to distribute
dynamically new pieces of code to devices as needed. Besides, if
agents are now capable of executing some processing, then we
might add some “intelligence” to them – allowing agents to
execute some actions without responding to a manager in case of
a link failure, for example.

3. THE COMPONENTWARE APPROACH

Recently there has been a renewed interest in the notion of
software development through the planned integration of pre-
existing software components. This is often called Component-
Based Software Development, or simply componentware. The
interest in componentware is based on a long history of work in
modular systems, structured design, and most recently in object-
oriented systems. These were aimed at encouraging large systems
to be developed and maintained more easily using a “divide and
conquer” approach. Componentware extends these ideas,
emphasizing the design of systems in terms of pieces of
functionality accessible to other pieces only through well-defined
interfaces, outsourcing of the implementation of pieces of the
application system, and focusing on controlled assembly of those
pieces using interface-based design techniques. [6] Building
software systems with reusable components brings many
advantages. The development becomes more efficient, the
reliability of the products is increased, and the maintenance
requirement is significantly reduced. Moreover, the development
time and cost can also be reduced.

The word “component” can now be considered ubiquitous, but
some fundamental aspects of a component can be distinguished
among various definitions. From [8], we can cite some common
component’s characteristics, it:

(1) has an external interface that is distinct from the
component’s internal implementation, and its interface
is defined in a contractual manner;

(2) demands a set of operations from the environment it is
deployed;

(3) provides a set of operations demanded by the
environment in which it is deployed;

(4) can interact with other components in the same
environment in order to form software units of arbitrary
capability.

From this perspective, one of the most important features of a
component is encapsulation, that allows a component to be a
black-box, accessible only through its programmatic interface.
Furthermore, a component can interact with its environment in
four distinguished manners: it requests services (item 2); it
provides services (item 3); and it interacts with other components
through the generation and observation of events (item 4).

Having defined what is meant by a component, we must also
present the aspects associated with the components’
characteristics that lead to advantages over other approaches.
First, components themselves are independent pieces of
functionality providing services to other potential client
components through its programmatic interface. It does not
matter how a component is implemented, or whether its
implementation changes on every new software release, as long
as its interfaces remains unchanged. Software changes generated
by requirement modifications remain restricted to the
components that implement that particularly functionality.

Second, being components independent pieces of functionality, it
provides favorable conditions for software reuse. And software
reuse usually implies in software quality. If a component is
reused, it means that it works and it has been tested. Also,
componentware does not imply in software reuse per se.
Software reuse also demands a well-defined design and an
elaborated planning to be feasible.

Lastly, componentware allows that common services required by
many applications to be developed as components once and
reused over time. This allows the definition of a generic
framework that can be used as a template for all new
applications. Developers can then spend more time designing the
application logic rather than spending it in common
infrastructure functionality.

The application of componentware in network and
telecommunication services management can address the current
need for a management system capable of dealing with multiple
network management protocols [5]. A distributed management
framework can easily integrate legacy systems into this paradigm
[4]. The integration of legacy systems is an important
requirement for new paradigms, since the complete substitution
of systems using CORBA, CMIP, and SNMP is simply not an
option to final users, which must consider the investment already
done in these systems. On the next two sections we will exploit
how the network and systems management field can benefit from
the key advantages provided by the componentware approach.

3.1 Componentware in the manager-side

Due to the great amount of information processing performed by
a network management system, it is expected to become
gradually more complex as the administrative requirements
evolve. Yet, the development requirements of new
telecommunication services and their management systems are in

great part alike the ones present in large information technology
software systems. Therefore, the software development process
of a new telecommunication service and its management system
can benefit from the latest advances in the software engineering
area, such as the systematic utilization of frameworks, and
server-side component models and architectures.

The framework concept embraces the premise that every
management application has the same basic infrastructure. In its
simplest form, a framework is simply a body of tried and tested
code that is reused in multiple software development projects.
The framework’s utilization allows us to cut project costs and
improve software quality all at once through software reuse. In
addition, it reduces development time since developers can spend
more time concentrating on the management-specific problem at
hand rather than on some common basic infrastructure. A good
framework also enhances the maintainability of software through
API consistency, comprehensive documentation, and thorough
testing.

Server-side component models define architectures for
developing distributed business objects. They combine the
accessibility and scalability of distributed object systems with the
benefits of encapsulated business logic. Server-side component
models are used on the middle tiers of distributed computing
architectures, which manage components at runtime and make
them available to remote clients. Yet, they support attribute-
based programming, which allows the runtime behavior of the
component to be modified when it is deployed, without having to
change the programming code in the component. Due to its
characteristics, server-side component models are appropriate
architectures for development of distributed component-based
services and management systems.

3.2 Componentware in the agent-side

The semantic richness of the information model of a management
application is an indication of the expressive power of the
abstractions used in this model. It measures how easy it is for
designers of network and systems management applications to
specify a task to be executed by a network management station or
an agent. The higher the level of abstraction used to model a
management application, the higher the semantic richness of the
information model, and the easier it is for a human to build and
design a management application. [7]

Management frameworks have traditionally offered protocol
Application Programming Interfaces (APIs) such as SNMP and
CMIP, constraining designers to model management applications
with low-level abstractions concerning protocol primitives. This
limitation has been addressed recently by the distributed objects
management paradigm, and can also be addressed by the
componentware approach. Components provide programmatic
interfaces, making the transport primitives necessary to execute
some remote task transparent to the programmer. The utilization
of components grants developers with high-level abstractions of
managed objects and its functionalities.

Network elements or managed objects can be easily modeled
with components through the encapsulation of some data or
behavior inside a component. Components allow the natural
integration with legacy protocols like SNMP and CMIP, being

capable of adding high-level functionality to network
management and translating these to low-level protocol
primitives. Common behaviors expected from agents such as
polling and traps can also be easily implemented using a
componentware approach. Polling maps to a service
request/response (a method invocation) of components while
traps match to event model. [4] The dispatching of events
throughout the network can be done using a distributed
observer/observable approach or through dedicated message-
driven middleware.

4. COMPONENTWARE REALIZED
THROUGH JAVA TECHNOLOGIES

Network and services management is an area that might involve
integration of many technologies, including GUI standards,
networking facilities, distributed processing, database, and
object-oriented modeling. Therefore, a network and services
management application might well make use of the ease of
programming, extensibility, object-oriented concept, and simple
description of management service provided by Java. Since the
number of Java-based applications for network management is
increasing, there is a corresponding increase in demand for a
Java-based management framework. [6]

With the introduction of the Java 2 Enterprise Edition platform
for the development of large-scale distributed applications, and
more recently the Java Management eXtensions, Java has
become a promising language and platform for the development
of new generation network and services management systems
based on a componentware approach. The next two sections will
highlight two key technologies for the implantation of a
component-based distributed management platform: J2EE and
JMX.

4.1 J2EE: Enterprise JavaBeans and related
technologies

Java 2 Enterprise Edition (J2EE) is the Java platform solution for
the development of distributed enterprise applications. J2EE
takes advantage of many features of the Java platform, such as
portability in any platform, CORBA technology support,
database access, and security model. Building on this base, J2EE
defines a standard for developing multi-tier enterprise
component-based applications and provides a set of services that
handles many details of application behavior automatically.

The core technology of J2EE is Enterprise JavaBeans (EJB),
which is a server-side component model for component
transaction monitors. Component transactions monitors are
robust application servers that deal automatically and
transparently with facilities like concurrency, distribution,
lifecycle, persistence, transactions, and security. EJB provides a
standard component model for the construction of component-
based applications, and offers a wide set of services to relinquish
the application developer from dealing with basic software
infrastructure. This allows the developer to focus on the business
application logic, reducing significantly the development time
and cost. In addition, components developed accordingly to the
Enterprise JavaBeans specification can be reused and deployed in
any EJB-compliant application server, in any platform. Figure 1

shows a layered representation of the relationship between the
application server, the services provided by the Enterprise
JavaBeans architecture, and the placement of the developed
components.

At short-term, the utilization of Enterprise JavaBeans in the
development of management and services applications can lead
to a faster time to market due to the easy of programming offered
by the Java platform and the infrastructure provided by EJB
servers, which deal with many aspects of the applications’
behavior automatically. At long-term, we can build up a
development framework and a component repository to speed up
even more the time to market of the new applications and
increase the systems’ reliability and quality, while lowering its
development cost.

EJB

Lifecycle

Concurrency

Persistence

Transactions

Security

Distribution

Application Server

Enterprise
JavaBeans

Services layer

EJB EJB EJB EJB EJB Components layer

Figure 1 – Simplified representation of the Enterprise
JavaBeans architecture

Some other J2EE technologies that can be relevant for the
development of network and services management solutions are:

�� JNDI (Java Naming and Directory Interface). JNDI
provides a standard interface for different naming and
directory services. This allows seamless access to
directory objects through multiple naming facilities;

�� JMS (Java Messaging Services). JMS is a standard
interface for accessing message-oriented middleware;

�� Servlets & JSP (Java Server Pages). Servlets & JSP are
the key technologies of the J2EE presentation layer.
They are a powerful solution for the representation of
dynamic content over request/response protocols such
as HTTP. Moreover, it can easily handle the dynamic
generation of XML content for the distribution over
heterogeneous environments.

4.2 Java Management eXtensions (JMX)

The Java Management eXtensions (JMX) define the architecture,
the design patterns, the APIs and the services for network and
systems management in the Java platform. JMX provides
developers of Java technology-based applications across all
industries with the means to instrument Java platform code,
create smart agents and managers in the Java programming
language, implement distributed management middleware, and
smoothly integrate these solutions into existing management
systems. [9] The JMX architecture is divided into three levels:

�� Instrumentation level – acts at the level of managed
objects, giving manageability to any defined
component;

�� Agent level – provides JMX management agents,
which are containers that provide core management
services that can be dynamically extended by adding
JMX resources;

�� Manager level – provides management components
that can operate as a manager for distribution and
consolidation of management services.

In addition, the JMX specification also provides interfaces to
widespread protocols such as CMIP, CIM/WBEM, and SNMP.

JMX allows the management of managed objects as components
(managed beans or MBeans), which acts as wrappers for
applications, components, or resources in a distributed network.
This functionality is provided by a MBean server, which serves
as a registry for all MBeans, exposing interfaces for manipulating
them. Furthermore, JMX contains the m-let service that allows
dynamic loading of MBeans over the network. [2]

Besides different protocols and technologies integration in the
Java platform, JMX also offers the ability do dynamically
download code in one agent. If a new service and its management
application are developed, then we can simply download a
dynamic MBean in the agent at run-time, and that agent will be
ready for the utilization and management of that service. This is
an important feature of the JMX technology, since the static
upgrade of the software agents would be very costly or even
almost impossible. Moreover, since the dynamic load of code has
some potential security threats, the security mechanism provided
by the Java platform makes JMX a reliable and safe technology
for the run-time upgrading of software agents.

Presentation interface

Application ServerComponent-based Management System

JMX interface

JMX Agent JMX Agent

Figure 2 – Proposed component-based architecture

5. PROPOSED ARCHITECTURE

Our effort in the construction of a component-based distributed
network management architecture, motivated by the ideas
presented before, is applied in two directions: the application of
J2EE technologies at the manager level, and the utilization of
JMX at the instrumentation of managed objects and
implementation of agents. Figure 2 depicts the proposed
architecture.

At the manager level, the architecture includes currently a
minimal framework that will provide some basic functionality to
newly developed management applications. In addition, the

architecture has some components that we intend to be reused in
other management systems developed within this architecture.
Figure 3 shows the schematic representation of the component-
based management system (manager entity). It is important to
notice that although the manager in the picture is represented in a
monolithic way, the services, the framework’s pieces and the
components can and much probably will be deployed in a
distributed way across a network.

Reusable
Components

Reusable
Components

Lifecycle

Concurrency

Persistence

Transactions

Security

Distribution

Application Server

Enterprise
JavaBeans

Services layer

Application-specific
Components

Framework
Application

Layer

Figure 3 – The component-based management system

6. CONCLUSIONS

We have presented in this paper our proposal and ideas behind it
for a component-based distributed network and services
management system. The componentware approach is applied
differently in manager and agent entities, and as so is also
implemented in our architecture by different technologies:
respectively J2EE and JMX. Since the development requirements
of management systems are much alike the ones present in
information technology systems, the extensive amount of work
already provided by the software engineering area in this subject
can and should be applied in large-scale network management
systems. The componentware approach also seems to fit naturally
in the design of agent entities due to the characteristics
encapsulation and dynamistic of the approach and its
implementation technology.

Concomitantly to the development of this architecture, we are
also developing a pluggable component that will allow the
network management systems built accordingly to our
architecture to represent management interfaces in heterogeneous
display devices. It will be done through the specification of a
XML (extensible Markup Language) representation information
model that can be automatically converted in markup
presentation languages like HTML and WML through the
application of XSLT (eXtensible Stylesheet Transformations).

7. ACKNOWLEDGMENTS

Edson Yanaga is a Master Student at CPGEI – CEFET-PR
sponsored by CAPES.

We would like to thank our colleagues Anderson Massashi
Shirata, and Fábio Henrique Flesch for the support and aid in the
development of this research. Special thanks extended to our
supervisor, Luiz Nacamura Júnior, for the precious advisory.

8. REFERENCES
[1] Brown A., Barn B. “Enterprise-Scale CBD: Building

Complex Computer Systems from Components”.
Proceedings of the 9th International Workshop on Software
Technology and Engineering Practice. Pittsburgh, USA. 30
August – 2 September, 1999.

[2] Fleury M., Lindfors J. “Enabling Component Architecture
with JMX”. O’Reilly Network.
http://www.onjava.com/lpt/a/578. February, 2001.

[3] Goldzmit G. “Distributed Management by Delegation”.
Ph.D. thesis, Columbia University, New York, NY, USA.
December, 1995.

[4] Jeong C., Shahsavari M.M. “Component-based Distributed
Network Management”. Proceedings of the IEEE
Southeastcon 2000. Pages: 460-466.

[5] Kawabata T., Yoda I., Maeomichi H., Tago M., Yata K.
“Component-oriented Network Management System
Development”. Network Operations and Management
Symposium, 2000. Pages: 395-408.

[6] Lee J.O. “Enabling Network Management Using Java
Technologies”. IEEE Communications Magazine. Volume
38, Issue 1. January, 2000. Pages: 116-123.

[7] Martin-Flatin J.P., Znaty S., Hubaux J. “A Survey of
Distributed Network and Systems Management Paradigms”.
JNSM, Special Issue on Enterprise Network and Systems
Management. December, 1997.

[8] Page-Jones M. “Fundamentals of Object-Oriented Design in
UML”. ISBN 0-201-69946-X Dorset-House Publishing,
New York, USA. 2000.

[9] Sun Microsystems, Inc. “JavaTM Management Extensions
White Paper – Dynamic Management for the Service Age”.
Revision 01. June, 1999.

