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ABSTRACT
This paper shows that it is possible to achieve convergence to
the optimum solution in a blind equalization framework with the
use of least mean square algorithm in decision-directed mode
(DD-LMS). In linear equalizers structures, the attainment of the
optimum solution strongly depends on the filter weights
initialization. We also show that decision-feedback equalizers in
DD mode (DD-DFE) converges to undesired local minima,
when all its weights are initialized with zeros, for a certain class
of channels. However, it is possible to improve convergence and
remove such local minimum by making use of joint equalization
and convolutional codes. The major contribution of the present
work is the convergence study of the mentioned configuration by
means of a comparative analysis of the performance surface and
the dynamical adaptation of both conventional DFE and joint
DFE & decoding structures.

1. INTRODUCTION

It is well known that intersymbol interference (ISI) is one of the
major impairments to achieve a higher capacity or a data rate
improvement in communication systems. Adaptive equalizer is a
classical and efficient technique for mitigating ISI in unknown or
time varying channels. The most conventional approach employs
a training sequence to adapt the equalizer weights into an
opened-eye condition, normally using the LMS adaptive
algorithm. Then the equalizer is changed to the so-called
decision-directed (DD) mode, in which the effective information
is transmitted . However, in some specific systems, the use of a
training sequence may not be practical. The adaptation process is
then said to be unsupervised and some more robust (blind)
algorithms are used. In this case, only some statistics
characteristics of the transmitted data symbols are known a
priori.

The first objective of the present paper is to make clear the
possibilities of carrying out a blind equalizer by means of a
continuous employment of the decision-directed stochastic
gradient algorithm (DD-LMS). We recall the limits of such
technique for the conventional linear transversal (LTE) equalizer
and then analyze the case of the non-linear decision-feedback
(DFE) structure.

The second and main motivation is the joint application of both
equalization and decoding process in the receiver, by taking into
account that a convolutional error correcting code is typically

used in transmission. The DFE equalizer is used in such
alternative configuration since its recursive nature is particularly
suitable for dealing with the corrected symbols.

The major original contribution of the work is the convergence
study of the mentioned configuration, which is carried out in two
steps. First we pose the performance surface for DD-DFE
equalizers showing that the joint use of the decoder avoids ill-
convergence in the most critical cases of “bad channels”, as
defined in [1].

As far as previous works are concerned, the present one extends
the results presented by Casas [1,6] regarding the class of bad
channels for which the DD-DFE equalizer converges to
undesired local minima, when all its weights are initialized with
zeros. We also complement the work in [5], where the joint
equalization-decoding structure was proposed in a supervised
(non blind) context and evaluated by standard results on bit error
rates, without any discussion about convergence issues.

Our work shows that the convergence to the desired global
minimum in a blind DD context is possible if we take benefice of
the convolutional code. This approach is shown to be even more
effective than other alternative solutions proposed in order to
improve convergence in DFE equalizers such as the use soft
decision devices[1,7].

 In order to assess such results, this paper is organized as follows.
Some backgrounds on adaptive equalization are recalled in
section 2. The DD-DFE structure is described in section 3, where
the joint DFE & decoding procedure is also introduced. In
section 4 we present and discuss the results. The conclusions and
perspectives are briefly posed in section 5.

2. BACKGROUND ON DD EQUALIZERS
The DD-LMS algorithm is obtained by the minimization of the
following cost function:
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where z(n) is the decided symbol when y(n) is the equalizer
output. The optimization of the equalizer parameters may be
carried out by the application of a steepest descent algorithm
over the functional (1). Then a stochastic approximation provides
the DD-LMS algorithm, given by:
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where u(n) is the equalizer tap-input vector consisting of [u(n),
u(n-1),..., u(n-N+1)]T, w(n) = [w0(n) w1(n) ... wN-1(n)]T is the
equalizer tap vector, e(n) is the decision (DD) error signal and
the constant µ is the adaptation step size.

Generally DD algorithms are used after a training sequence when
the eye-diagram is sufficiently opened, in order to refine the
equalization and track channel variations. In this case, an
important result reported in [2] shows that DD algorithm
converges to the optimal solution if a linear invariant noiseless
channel is considered. Nonetheless, if the training sequence is
not sufficient to open the eye, convergence may take place
towards other stationary points resulting in high error rates.

The reference [3] deals with the case where a previous training
sequence is not used, i.e., DD blind equalization, for binary and
multilevel data. It concludes that the convergence to the global
minima depends on the initialization. An illustrative example is
shown in figure 1 where the contours of the performance surface
of a DD linear transversal equalizer (LTE), with two coefficients,
are represented. In this case the transfer function of the channel is
given by h(z) = 1+0.6z-1.
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Figure 1: Trajectories of the DD-LMS algorithm over
the contours of the performance surface.

We can observe the existence of four local minima located on
[0.14 0.66], [-0.49 0.82] and their corresponding symmetric
points. A global minimum is found in [0.91 –0.40] as well as in
its symmetric position.

A number of trajectories of the LMS algorithm is also presented
in figure 1 from several initial conditions into their
corresponding critical points. A sufficiently small adaptation step
size, (µ = 0.001) was used so that the stochastic gradient could be
considered a good approximation of the true one.

The two straight lines indicate a region for which the convolution
channel-equalizer leads to a closed-eye condition. Such region
contains the local minimum [-0.49 0.82] and its symmetrical
point. It is worth pointing out that convergence to these two local
minima implies in wrong decisions and such errors are fed back
in the update algorithm as it can be observed in (2). Hence, if it is
possible to reduce the quantity of errors generated by this closed-
eye condition, we can plane or even eliminate the minima
associated to these errors. This is the basic idea of using error
correcting code together with the equalization process.

The same principle can be applied in DD-DFE equalizers. In this
case, the approach is still more justified, since there is a kind of
double feedback: via the algorithm as well as the recursive
structure itself. Such case is studied in the next section.

3. THE DD-DFE EQUALIZERS
In spite of its simplicity and suitability in several applications, it
is well known that linear equalizers suffer from important
limitations, among which a critical one is the noise enhancement
problem, in cases when the zeros of the channel are close to the
unit circle. Due to its non-linear nature, DFE equalizers are an
interesting alternative in such cases. Its recursive structure is also
appropriate in other contexts, for instance when the channel
presents a long impulse response. On the other hand, the
performance of DFE structure can be affected by the
phenomenon of error propagation. Figure 2 illustrates the DFE
structure. The DD-LMS algorithm to be used in this case is given
by:
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where x(n) and y(n) are the equalizer input and output
respectively; )(ˆ na  is the decided symbol, so that its past values
compose the vector a(n)=[â(n-1) â(n-2) ... â(n-N)]T, which feeds
the recursive and adaptive filter defined, at instant n, by the
weight vector b(n)=[b1(n) b2(n)... bTD(n)]T. The weights are
updated by means of the decision error e(n) ,as given in (3).
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Figure 2: DFE structure.

Analysis of convergence properties of the DD-DFE can be found
in [1], [4], [6] and [7]. References [1] and [6] provide a class of
channels that results in ill convergence when the feedback filter
coefficients are initialized with zeros. Note that this is the most
natural value to be used as initialization, since it guarantees
convergence when the channel has an opened-eye condition. In
this work, we deal with this class of bad channels to show that



error correcting codes provide better decisions to the DD-DFE so
that it can converge to global minimum.

The following assumptions were made:

Assumption 1:

The source alphabet is QPSK {±1 ±j} obtained by the output of a
convolutional encoder with a rate R=½. This encoder is fed by an
independent and identically distributed bit sequence with
p(0)= ½.

Assumption 2:

The channel has a finite impulse response and the feedback filter
matches the length of the channel postcursor response. The
channel has no precursor and the leading tap dominates. Hence,
we can define the vector h=[h0 h1 ... hM-1], composed by M
elements of the channel impulse response, where h0=1 and |hi|<1
for i=1,2,...M-1. Note that such condition does not imply in a
minimum phase characteristic. Finally the channel is also
considered to be noiseless.

Assumption 2 is very limiting for practical channels, where
precursors are normally present. As a consequence of this
assumption, the feedforward (FF) filter is not useful, and thereby
it can be discarded. Therefore we can restrict our analysis to the
feedback (FB) filter and to local minima associated with error
propagation. Nevertheless the assumption is justified since a full
theoretical analysis was developed in [4], where both FF and FB
filters were considered,. However, this work did not take into
account the impact of error correcting codes in the joint
adaptation, which is the interest point of our work. Such analysis
is not trivial and Assumption 2 makes it more feasible. Thereby,
further studies should be done in order to include precursor ISI
and corresponding FF equalizer.

The joint DFE and convolutional decoder structure to be used in
this work is shown in figure 3. It can be seen that the feedback
filter is divided in two parts. This is done because the output of
the decoder is expected to be more reliable then the output of the
decision device. However, the decoder has an intrinsic delay. For
that reason, its output can only be used as the input of the
feedback filter if such delay is considered.

This scheme was firstly used in [5] with the objective of reducing
theerror propagation effect after a training period. In this work,
we use the same idea but without a training period, i.e. in blind
operation. The algorithm used for adaptation is the DD-LMS
given by (3).

We tested two different convolutional codes with R= ½ , the first
one with a polynomial generator [5 7] and the other with [64 74]
(octal representation) [8]. A convolutional Viterbi decoder, the
metric of which is a quadratic Euclidean distance, has been used
in the receiver. The obtained results are presented in the sequel
where different aspects of the method are discussed.
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Figure 3: Joint DFE and decoding structure.

4. SIMULATION RESULTS
4.1 Avoiding Local Minimum in the
Performance Surface
The channel to be considered in our first simulation is given by
h(z)=1+0.9z-1-0.8z-2. It belongs to the class of bad channels
defined in [6]. The error surfaces were obtained by fixing the two
equalizer weights and transmitting a long sequence of about 3500
symbols. If ergodicity is assumed, a time average of the quadratic
error can be calculated and used as an approximation of the cost
function for each fixed pair of weights. The procedure is then
repeated for a sufficient number of distinct weights so that the
surface contours be refined enough to render possible the
analysis of critical points.
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Figure 4: Contours of the performance surface for the
conventional DFE.

Figure 4 shows the result obtained using the DFE-structure
shown in figure 2. The transmitted symbols were obtained from
the output of a convolutional encoder with a polynomial
generator [5 7]. It can be observed that there is an undesired local
minimum close to the point (0.0 0.0). Then the choice of such



usual initialization results in ill convergence. This is illustrated in
the trajectory of the DD-LMS algorithm from (0.0 0.0) to the
local minimum in ≈ (-0.033,0.145) with a step-size of µ=1x10-4.
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Figure 5: Contours of the performance surface for joint
DFE & decoding. Convolutional code generated by
polynomial [5 7],  D=7, TD=1.
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Figure 6: Contours of the performance surface for joint
DFE & decoding. Convolutional code generated by
polynomial [64 74], D=9, TD=1.

The results in figure 5 and 6 are obtained by using the joint DFE
and decoding structure given in figure 3. The codes are generated
by polynomials [5 7] and [64 74] respectively. As it can be
observed, there is not any undesirable local minimum in the path
from the zero initialization to the global minimum in (-0.9,0.8),
so that a convergence to the optimum and desired solution is
attained. The trajectories correspond to the DD-LMS with step-
size µ=1x10-4.

4.2 The effects of the convolutional decoder

The local minimum shown in figure 4 is a result of error
propagation in the DFE. The use of codes makes it possible to
reduce such error propagation and eliminate the corresponding
local minimum. A complete theoretical description of such
behavior is not trivial due to the difficulty in the code analysis.
However, as a practical justification, it is interesting to point out
the effects of the decoding process in a closed-eye condition.
Hence some results are obtained and presented in table 1 in order
to make clear the error correction capability even in such
conditions.

Figure 7 depicts the structure used to obtain the results in table 1.
The feedback filter weights were kept constant and equal to zero,
i.e. there was no feedback filter. Table 1 shows the error rate at
the output of the decoder for various tentative decision delays
using the same channel as in subsection 4.1 . Clearly the error
rate is 0.5 at the decision device output â(n).
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Figure 7: Structure used to evaluate the effect of
decoding in closed-eye conditions

Error Rate

(Tentative)
Decision Delay

[5 7] [64 74]

0 0.3448 0.3850

1 0.4302 0.3780

2 0.3508 0.4396

3 0.3475 0.4201

4 0.3599 0.4184

5 0.3373 0.4147

6 0.3340 0.4187

7 0.3458 0.4084

8 0.3427 0.4045

9 0.3418 0.4010

Table 1: Error rate as a function of tentative decision
delay

Firstly, we can see that the increase of the tentative decision
delay does not necessarily bring lower error rates. This is because
the Viterbi decoder was not designed for closed-eye condition
and the survivor paths do not converge as the decision delay
increases. Another possibility that accounts for such behavior is



that the code was not designed for burst errors. Nevertheless, as
the decision delay increases the oscillation of the error rate is
smaller. Hence, by our simulations, a decision delay of three
times the code constraint length should be enough to achieve a
good level of error correction in this situation.

Secondly, it can be observed that the increase in the code
constraint length did not yield lower error rates, as is expected in
AWGN case. Again, this anomalous behavior is a result of the
extreme situation generated by the closed-eye condition.
Nonetheless, further studies must be done with other constraint
lengths, aiming a more general conclusion about this behavior.

4.3 Convergence rate assessment

Another important aspect that must be taken into account is the
value of the adaptation step size µ. It is known that the algorithm
may escape from the local minimum by increasing the value of
the step size. In order to compare the performance of
conventional DFE and the joint DFE and decoding in terms of
the adaptation step size, an example is shown in figure 8. The
convolutional code was generated by polynomial [5 7] and the
channel was h(z)=1+0.4z-1-0.2z-2+0.8z-3-0.7z-4+0.1z-5. The same
step-size was used for both structures in each case.

As it can be observed, the step size in figure 8a is small enough
for conventional DFE to stay seized in the local minimum, while
the joint structure converges toward the optimal solution. On the
other hand, figure 8b shows a case were conventional DFE
escapes from the local minimum. Nevertheless we note that the
joint DFE and decoding structure converges significantly faster.
Additionally, figure 8c shows the worst case of gradient noise
due to the higher value of step size, which causes the code to lose
performance. Thus, joint DFE and decoding converges slower
than conventional DFE. Note, however, that the value used for
the adaptation step size is very high and close to the limit for
which convergence is guaranteed.

Others solutions have been proposed in the literature in order to
search for the convergence to the desired global minimum in
DFE. An interesting one is the use of soft decision like a
saturation device [1,7]. We tested such approach with two types
of bad channels and observed that it converges to the desired
minimum for h(z)=1+0.9z-1-0.8z-2. However it does not converge
for a more critical channel like h(z)=1+0.95z-1-0.9z-2. In this
same case the joint DFE and decoding still converges to the
desired solution as shown in figure 9, where 55000 iterations was
executed using µ=1x10-4,as the step-size.
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Figure 8: Dynamical comparison between conventional
DD-DFE and the joint DFE & decoding structures:
(a) µ=1x10-4, (b) µ=0.01, (c) µ=0.05

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b1

b2

joint DFE & code 

DFE+soft decision 

Figure 9: Weights trajectories for joint DFE & decoding
vs. DFE + soft decision.

5. CONCLUSION & PERSPECTIVES

In this paper we have shown that it is possible to achieve
convergence to the desirable global minimum with the use of the
DD-LMS. In a linear equalizer, such convergence is strongly
dependent on the filter weights initialization. Using the DFE
structure together with DD-LMS, there is a class of channels that
presents ill convergence when the feedback filter weights are
initialized with zeros. We have shown that the use of error
correcting codes renders possible the convergence to the

decoding



desirable global minimum, even for channels belonging to this
class.

There are others advantages in the use of joint equalization and
decoding, besides the improvement in the convergence of blind
equalizers. Reference [5] shows that the use of this technique
gives an improvement of about 3dB and can reach more than
6dB if spatial and temporal diversity are applied, in comparison
with conventional techniques, in a peer-to-peer situation.

It is also important to notice that this is a preliminary work in the
subject. Further studies are being done to achieve a more general
and reliable result. Analytical results are extremely difficult to
obtain due to the technical difficulties imposed by the
convolutional code. The study of other blind algorithms as CMA
is also in course.

Acknowledgements
We would like to express our appreciation to the Fundação de
Amparo à Pesquisa do Estado de São Paulo (FAPESP) for
supporting our graduate education.

References
[1] R. A. Casas, C. R. Johnson, Jr., R. A. Kennedy, Z. Ding and
R. Malamut, ‘Blind Adaptive Decision Feedback Equalization: A
Class of Channels Resulting in Ill-Convergence from a Zero
Initialization’, Int. J. Adapt. Control Signal Process., vol. 12,
173-193, 1998.
[2] O. Macchi and E. Eweda, ‘Convergence Analysis of Self-
Adaptive Equalizers’, IEEE Trans. Inf. Theory, vol. 30, no. 2,
161-176, March 1984.
[3] J. E. Mazo, ‘Analysis of Decision-Directed Equalizer
Convergence’, Bell System Technical Journal, vol. 59, no. 10,
1857-1876, December 1980.
[4] R. Kennedy, B. Anderson, R. Bitmead, ‘Blind Adaptation of
Decision Feedback Equalizers: Gross Convergence Properties’,
Int. J. Adapt. Control Signal Process., vol. 7, 497-523, 1993
[5] S. L. Ariyavisitakul e G. M. Durant; ‘A Broadband Wireless
Packet Technique Based on Coding, Diversity, and
Equalization’, IEEE Communications Magazine, 110-115, July
1998.
[6] R. A. Casas, ‘Blind Adaptive Decision Feedback
Equalization: A Class of Bad Channels’, MS Thesis, Cornell
University, 1996
[7] S. Marcos, S. Cherif, M. Jaidane, ‘Blind Cancellation of
Intersymbol Interference in Decision Feedback Equalizers’, Proc.
Int. Conf. on Acoustics, Speech and Signal Processing, 1073-
1076, May 1995
[8] S. Lin e D. J. Costello Jr.; ‘Error Control Coding:
Fundamentals and Applications’, Prentice-Hall,
Englewood Cliffs, NJ, 1983.


