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Abstract— This paper proposes a new strategy for fitting
Hidden Markov Models to error processes of channels with
memory. Our approach consists of obtaining the analytical
expression of the likelihood function of the model parameters
and applying particle swarm optimization (PSO) to obtain
their maximum likelihood (ML) estimates. In particular, this
approach is here applied to the well known single error-state
(simplified) Fritchman models, which have been recognized
as a very useful tool for modeling error process of several
communications systems over the last decades. The paper also
addresses the mathematical analysis of several statistics of burst
errors produced by these models. Some numerical examples are
given in order to illustrate the effectiveness of the approach
here proposed.
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I. INTRODUCTION

Most communications systems and networks of current interest
for the scientific community are characterized by the occurrence
of statistically dependent (burst) errors at the bit and packet levels.

A great research effort has been made during the last decades
in order to provide tools for investigating the impact of errors on
the performance of networks, by means of analysis and simulation
[1].

The establishment of simple models with the ability to capture
the most significant statistical properties of the error processes is an
issue of utmost importance and the use of Markov Models (MM)
and Hidden Markov Models (HMM) has been frequently claimed
in this context.

Hidden Markov Models have been successfully applied to satel-
lite and wireless communications [1]–[5], [13]. Besides, simple
HMM such as the Gilbert-Elliot model have been shown to be
useful for performance analysis, not only to evaluate the impact
of errors generated in the physical layer, but also in regard of the
errors produced in higher layers [1].

A class of Markov models of great interest is that of Fritchman
models, in which a finite number of states is partitioned in error
states, that generate errors with probability 1, and error-free states
[6]. In particular, the single-error state model usually named
simplified Fritchman model (SFM for short) has been applied to
several wireless channels and frequently used as a benchmark to
evaluate other strategies for burst error modeling [7].

The parametrization of HMM models is usually obtained on
the grounds of maximum likelihood (ML) estimation, using the
well-known Baum-Welch algorithm. This algorithm is guaranteed
to converge to parameter estimates that locally maximize the
likelihood metrics. As the likelihood functions of HMM models
often have multiple modes, the quality of the models so obtained
is heavily dependent on the initialization of the algorithm.

In the case of Fritchman models, the mathematical analysis of
some statistics of the burst error process and the use of curve fitting
techniques have been frequently adopted for adjusting the model
parameters [4], [7].

In the present work we propose another approach for fitting
those models, which is rooted on the derivation of a convenient
analytical expression for the likelihood of the parameters. With
this aim, the observed error sequence is regarded as a sequence
formed by pairs of lengths of clusters (groups of consecutive errors)
and gaps (groups of consecutive correct decisions), instead of
being expressed as a sequence of binary observations. Besides, we
propose the use of the particle swarm optimization (PSO) technique
to maximize the likelihood function, in order to better deal with
its multi-modality.

To the best of our knowledge, no similar approach has been
proposed so far. Our guess is that it may be applied as an effective
tool for deriving HMM models for errors in channels with memory.
However, we have just started to investigate the use of this approach
and have no rigorous characterization of its applicability at this
moment.

We focus on the application of the proposed approach to
fitting simplified Fritchman models. Besides deriving the likelihood
function, we also present analytical expressions of several statistics
of the error process generated by an SFM. Numerical examples of
the application of these expressions to check the consistency of the
proposed approach for model parametrization are also presented.

The paper is organized in 5 sections. A brief presentation of
simplified Fritchman models is given in Section II, as well as
the analysis of their likelihood function. The proposed method for
model parametrization applied to SFM is presented in section III.
Section IV is devoted to the analysis of some statistics usually
applied in the investigation of burst-error processes. Numerical re-
sults are given is section IV. Finally, our conclusions and proposals
for future works are summarized in section V.



The 7th International Telecommunications Symposium (ITS 2010)

Fig. 1. Simplified Fritchman model of N states

II. LIKELIHOOD FUNCTION OF SIMPLIFIED FRITCHMAN
MODEL

The general form of the simplified Fritchman model can be seen
in figure 1, where states are numbered from 1 to N, from right to
left. This model is characterized by (2.N −1) parameters, namely,
Θ = (α,β ) = ((α1, ...,αN),(β2, ...,βN)), where all of them are in
the range [0,1] and α1 +∑N

n=2 βn = 1.
Without any loss of generality, any error sequence can be

compactly written in the form ((0n1 1m1),(0n2 1m2), .....(0nK 1mK )),
where it is assumed that all m′s and n′s are positive and an error
has occurred just prior to this sequence and a no-error has occurred
just after this sequence. We use the terms ”gap” and ”cluster” to
respectively designate these groups of 0′s and 1′s. ”Bursts” are
defined here as a sequence beginning and ending with an error,
preceded and succeeded by gaps with length greater or equal to a
certain value L, such that no interior gap has length greater than
L. From an historical point of view, this is the so-called ”CCITT”
definition of burst.

Straightforward calculations reveal that the probability of this
sequence, under the conditions assumed, can be written as:

P[
K∩

k=1

(0nk 1mk )|1] =
K

∏
k=1

P[0nk 1mk |1] (1)

where:

P[0n1m|1] = αm−1
1 .

N

∑
i=2

βi.(1−αi).αn−1
i (2)

Hence, if the observed error sequence is characterized by
((m1,n1),(m2,n2), ...,(mK ,nK)), then the ML estimation of pa-
rameter Θ can be pursued by solving the following optimization
problem:

max z =
K

∏
k=1

[αmk−1
1 .

N

∑
i=2

βi.(1−αi).αnk−1
i ] (3)

subject to:
0 ≤ αi ≤ 1 i = 1, ...,N
0 ≤ βi ≤ 1 i = 2, ...,N

α1 +∑N
n=2 βn = 1

(4)

An important observation that should be made at this point is
the trivial fact that MK = ∑K

k=1 mk is a sufficient statistics for the

sequence m1,m2, ...,mK , since the objective function of the above
optimization problem can be rewritten as:

max z = αMK−K
1 .

K

∏
k=1

[
N

∑
i=2

βi.(1−αi).αnk−1
i ] (5)

Another point worth noticing is the fact that the objective
function is a product of probabilities and if their number K
is high, it is likely that figures below the computer’s number
range are reached (typically 10−300). Note that the quality of the
parameter’s estimation is enhanced as K increases. The simplest
strategy to circumvent this problem is the use of logarithms, but
these probabilities are made by sums whose individual terms can
also reach values below computer’s resolution. Hence we developed
a very simple approach that can deal with this limitation [14].

III. PROPOSED METHOD FOR MODEL FITTING

Although we are facing an optimization problem with linear
constraints, this by no means assure us to find global optimal
solutions. On the contrary, the literature is full of similar cases and
situations where the multi-modal behavior of the objective function
(OF for short) prevent us to find the global solution. The case here
discussed is no exception.

The consequence of this fact is that the quest of global solution
with any gradient-optimization method is extremely dependent on
the proposed initial solution. Several strategies were envisaged to
produce methods that can circumvent this fact, but up to these days,
there is no such method capable to cope with a general multi-modal
objective function. Most of them are based in some convenient
metaphor, which is useful to produce a procedure that probes the
OF beyond the ”well of attraction” of a local optimal solution. We
can mention the Genetic Algorithms (GA) [9], Simulated Annealing
(SA) [10], Evolutionary Algorithms (EA) [11], Particle Swarm
Optimization (PSO) [12] among others. All these methods have
their pros and cons.

For a long time, the authors were involved with the PSO
technique and our belief is that this method suits our needs as far as
this application is concerned. In short, the PSO technique consists
of initially spreading ”particles” uniformly over the feasible region
and evaluate a fitness function (in this case the objective function)
at each of these particle locations. After that, each particle moves
with a specific velocity which is an weighted vectorial composition
of two components: one is given by the direction towards the best
position visited by the particle (local information) and the other
is given by the direction towards the best position visited by all
particles (global information). This process is repeated until some
stopping criterion is met. No question that this method has a strong
brute-force feature but we must acknowledge that all metaphoric-
based optimization procedures have this characteristic. For those
interested in knowing more about a comparison between PSO and
some evolutionary procedures, we recommend [8]

IV. SOME USEFUL STATISTICS OF THE BURST-ERROR
PROCESS OF A SFM

The limiting state probabilities xi, i = 1, ..,N of the SFM can
be easily calculated by solving the classical equation xT = xT .P
where P is the state transition probability matrix of this model.
This solution is given by:

x1 = [1+
N

∑
n=2

βn

1−αn
]−1 (6)
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xi =
βi

1−αi
.x1 i = 2, ..,N (7)

If G, EC, EFB respectively represents the random variables ”gap
length”, ”error cluster length” and ”error-free burst length” (see
these and more definitions in [7]), then their distributions are as
follows:

P[G = m] =
∑N

i=2 βi.(1−αi).αm−1
i

∑N
i=2 αi.βi

(8)

P[EC = m] = α1.(1−α1)
m−1 (9)

P[EFB = m] =
∑N

i=2 βi.(1−αi).αm−1
i

∑N
i=2 αL−1

i .βi
(10)

There are two other distributions that are of particular interest to
those who work in the coding community. They prefer to approach
this problem by means of the concept of ”burstiness” instead of
a definition of ”burst”. This concept is related to the length of
sequences of the form (0m|1) and (1m|0). If errors are random and
uniformly distributed over the time, these length distributions do
present a power law, indicated by a linear graph in a log scale.
”Burstiness” is seen as a depart from this linear situation.

For the SFM here discussed these distributions are given by the
following expressions:

P[1m|0] = (
x1

1− x1
).(1−α1).αm−1

1 (11)

P[0m|1] =
N

∑
n=2

βn.αm−1
n (12)

It is conceivable that someone interested in having a Fritchman’s
model (or any other model, as a matter of fact) that adjusts his
data can approach this problem by means of fitting a particular
distribution to this data. This approach is in the realm of the
so called ”curve fitting” techniques and by doing so there is no
guarantee that other important statistics do also fit the same data.

What we would like to make crystal clear at this point is the
fact that we are not here proposing a curve-fitting solution but
instead an approach of finding model’s parameters by means of
the maximum likelihood standpoint. It is a fact that we also have
no guarantee that the model hereby found do fit all the above
mentioned distributions. Nevertheless what we have observed in
practical cases, and is illustrated in next section, is that models
estimated by this manner tend to fit all the mentioned distributions.

V. SOME NUMERICAL RESULTS

In order to test and validate this procedure as a mean of
estimating SFM from data, we adopted the following methodology:

(1) we randomly select an order and the parameters of a SFM;
(2) we generate a large error sequence according tho the previous
item; (3) we find the ML estimates of the SFM’s parameters
by means of the PSO technique; (4) since we have analytical
expressions for some statistics, we evaluate them for the true and
estimated parameter values of the SFM.

For the purpose of this article, we select a SFM of 4 states,
corresponding to 7 parameters. The real and estimated parameters
values are shown in table I and the selected statistics are graphically
presented in figure 2. We would like to draw attention to the
following facts:

• Although the estimated parameters are not very closed to the
real ones, the matchings of the statistics are excellent. This

TABLE I
TRUE AND ESTIMATED SMF PARAMETERS

Parameter Real Value Estimated Value
α1 5.054−1 5.182−1

α2 9.841−1 9.930−1

α3 4.233−1 4.051−1

α4 9.937−1 6.811−1

β2 1.940−2 7.572−2

β3 4.160−1 4.060−1

β4 5.926−2 0.000
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Fig. 2. Real and Estimated Statistics
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fact suggests some robustness of the implemented procedure
and it was observed in all tests which we made with models
of order from 4 to 10.

• The ML estimation of the model parameters was able to
produce a fairly acceptable fitting of four different statistics,
although none of them was involved in the original procedure.

• The number of PSO particles used for the example presented
was 10000, which represents 100001/7 = 3.727 particles per
dimension, an extremely low value. This pattern was also
observed in higher dimensions, suggesting that even with
sparse filling feasible regions, the PSO algorithm fortunately
behaves well.

• The number of (0m1n) data pairs used for this example was
1000, which roughly means a data error sequence 2.000.000
bits long. As stated before, the traditional ML estimation by
Baum-Welch procedure operates on the data error sequence
while the PSO operates on the gap-cluster pair sizes, thus
giving an advantage to the latter as far as computer processing
time is concerned.

VI. CONCLUSIONS

A new approach for fitting Hidden Markov Models to burst
error channels has been proposed. This method is rooted on
the derivation of a convenient expression for the observed error
sequences, in terms of gap and cluster lengths, as well as on
the use of particle swarm optimization for performing maximum
likelihood estimation of the model parameters. An application of
this approach to simplified Fritchman models has been addressed.
Besides, the analysis of a number of statistics usually adopted
in the investigation of burst errors has also been presented. The
expressions so obtained were used in numerical examples of
application of the approach here presented for fitting SFM models.
In the continuation of this work we intend to apply this method to
the parametrization of other Hidden Markov models. Besides, an
in-depth investigation of the class of models that can be adjusted
by the proposed method will also be pursued.
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