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ABSTRACT 
In this work we exploit the sparse nature of digital radio 
channels affected by large multipath delays towards 
complexity reduction of adaptive equalization algorithms. 
A sparse channel is defined here as the one having a few 
nonzero powerful taps separated by many negligible taps. 
The terrestrial High Definition Television (HDTV) channel 
model is considered here as a practical example of a sparse 
wireless channel. A tap-weight selection method is 
formulated based on the magnitude relationship between 
the negligible and the powerful tap weights of a linear 
equalizer. The proposed method eliminates those tap 
weights that are considered negligible and leave only the 
most powerful ones. Compared to a conventional adaptive 
equalizer its possible to achieve at least the same 
performance using only the most important (powerful) tap 
weights. Furthermore, the tap-weight selection (TWS) 
method results in a considerable computational resource 
saving, which is proportional to the number of negligible 
taps of the linear equalizer.  

1. INTRODUCTION 

The classical problem of adaptive equalization has been 
intensively studied along several years. The use of adaptive 
and blind equalizers in wireless communication systems is 
motivated by intersymbol interference (ISI) caused by 
multipath delay spread in digital radio channels. In particular, 
equalization of sparse wireless channels, i.e. those with a large 
multipath delay among its principal impulse response 
components, has been intensively studied in order to better 
exploit its structure. Under the assumption of ideal sampling 
and working at the symbol rate, the length of the equivalent 
discrete-time CIR can be larger in systems with a high bit-rate, 
such as the next generation mobile-radio systems and 
broadcast technologies. In particular, the terrestrial HDTV 
discrete-time CIR for a symbol-rate of 4.88 Mbaud exhibits a 
few echoes, the “farthest” one having a time-delay of more 
than 20 symbol intervals [1]. Such channel can be considered 
sparse due to its characteristics. The use of linear equalizers in 
the equalization of sparse channels with a large impulse 
response may present an elevated computational requirement, 
as the number of tap inputs is generall y large. Some recent 
works [3] show that the simultaneous use of forward and 
backward prediction-error transversal filters (FPEF and BPEF) 
under the constant-modulus (CM) criterion offers a better 
robustness and a convergence rate faster than that of 
conventional li near equalizers. In addition to this, few 

equalizer taps are needed to reduce greatly ISI, leading to an 
inferior computational complexity. Other equalization 
strategies can be found in [4], [5]and [6]. 

However, for sparse wireless channels, all these equalization 
strategies are not concerned to the relationship between the 
CIR and the EIR, which we study in this work. A tap-weight 
selection (TWS) method is proposed here motivated by the 
presence of negligible tap weights in linear equalizers due to 
the presence of negligible taps in a sparse CIR. For a sparse 
channel the optimum Wiener solution can gives us an 
indication of which tap weights are to be selected. In this work 
tap-weight selection is done during the adaptation process via 
LMS algorithm through a periodicall y observation of the mean 
square error (MSE) followed by the observation of EIR 
components and subsequent selection of the most important 
ones. In this work we develop a method to do the after. Our 
simulations show it results in an equalizer with few non-zero 
tap-weights that lead at least to the same performance of 
conventional equalizers with a computational complexity gain. 

The rest of this paper is organized as follows: Section 2 briefly 
describes the model for a multipath channel as well as sparse 
channel models used in our computer simulations. Section 3 
presents a constrained version of Wiener-Hopf equations for 
sparse channels. Section 4 introduces the proposed MSE-
based method for tap-weight selection. Our simulation results 
are ill ustrated in section 5 and section 6 states our conclusions.  

2. SPARSE CHANNEL MODELS 

The equivalent baseband discrete-time impulse response for a 
multipath channel corrupted by ISI can be represented as: 
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where L is the number of ISI components, delayed of k time-
samples from the principal component By taking the z-
transform of both sides of  (1) we get: 
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where z-k represents a delay of k time-samples from the 
principal component. If all values of k are greater than zero we 
say the channel model is formed only by post-cursors 
components. For this kind of channels we have a minimum 
phase channel i f c(k+1) < c(k), for all k. In the z-plane such 
channels have all their zeros located inside the unit circle. On 



 

the other hand, if k assumes negative values the channel is 
classified as non-minimum phase. In this work we deal with 
both possibiliti es. For the minimum phase case we use 
simpli fied sparse models, as in (3) and (4). Non-minimum 
phase case is represented by the terrestrial HDTV channel 
model, which will be detailed later in this section. Here we use 
the term “sparse” to designate a wireless channel with a few 
powerful taps separated by many negligible taps. In a 
simpli fied model for one delayed multipath, we can start from  
(2) and vary the multipath delay profile by varying the value 
of k as in the following: 

kczzh −+=1)(1  (3) 

 
Figure 1: Example of sparse channel with one ISI component. The 
CIR is obtained from (3) for k =5. We see a multipath delay of five 
symbol intervals is modeled here.  

 

In figure 1 we see the CIR of a simpli fied sparse channel for 
k=5. In another particular case of (2) we have an additional 
term z-k representing a second ISI component with a negligible 
power compared to the other two components and situated 
symmetricall y between them. The channel model is now 
written as: 
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where 1< k1< k2 and c1 << c2. Figure 2 ill ustrates this case. 

 
Figure 2: Example of sparse channel with two ISI components. The 
CIR is obtained from (4) for k1 =4 and k2=8. This CIR models a 
multipath channel with two echoes delayed of four and eight symbol 
intervals respectively. 

A practical example of a sparse channel occurs in digital 
television broadcasting systems, popularly known as HDTV. 
The analog CIR for L paths is modeled as follows [1]: 
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where ci, φφi and ττi represents respectively the magnitude, phase 
and time-delay of the ith path and g(t) is the impulse response 
of a raised cosine filter. An example of an HDTV channel is 
obtained using the set of parameters in table 1. Figure 3 
exhibits the analog version of its CIR and figure 4 shows the 
discrete-time version (sampled at the symbol rate) [1]. 

Multipaths Delay (µµs) 
Relative 

Gain 
Phase 

(degrees) 

Carrier-
to-noise 

ratio 

(C/N) dB 

1 -1.153 0.1 -24.7 22.9 

2 2.203 0.3 151.2 22.9 

3 5.046 0.2 -63.8 22.9 

Table 1: Multipath parameters (delay, magnitude and phase) of the 
terrestrial HDTV channel impulse response.  

 
Figure 3: Magnitude of the analog impulse response for the 
terrestrial HDTV channel model. Observe the multipath delay is very 
large. The largest one (farthest echo) occurs after 24 symbol 
intervals. 

 
Figure 4: Sampled version of HDTV channel impulse response. 



 

3. CONSTRAINED WIENER-HOPF EQUATIONS 
FOR SPARSE CHANNELS 

The presence of negligible elements in the optimum tap-
weight vector of a linear equalizer reflects the sparse profile of 
channels. Let us suppose a sparse channel for which the CIR 
and the EIR have the same length. The number of negligible 
tap weights of a Wiener equalizer can be inferred from the 
CIR. In a particular case of a sparse channel, ill ustrated in 
figure 2, null taps separates the nonzero taps and the spacing 
among the nonzero taps is the same. In such symmetrical cases 
the number of null tap weights of the equalizer is exactly the 
same as those of channel. Also, the spacing among the 
nonzero tap weights is the same as those of channel. However, 
in a more general case, where there is not such symmetry, this 
is not verified. For a successfull y trained equalizer, null tap 
weights never occur as a consequence of the misadjustment of 
the adaptive algorithm and the noise power.  

The motivation of this work is the presence of negligible 
elements in the optimum Wiener solution, which we wish to 
eliminate from the adaptive equalization process. Therefore, 
constrained Wiener-Hopf equations are formulated here, 
assuming the tap weight vector has some a priori null 
elements. Our constrained optimization problem is based on 
the method of Lagrange multipliers [2]. 

Let )(wf = ]|)([| 2neE  be a real-valued function we wish to 

minimize, where )(ne  is the error between the desired 

response )(nd  and the output )(ny  of the equalizer.  

Assuming w is the M by 1 tap weight vector of the equalizer 

with K null elements, we wish to find the constrained versions 
of the correlation matrix of the signal at the equalizer input 
and the cross-correlation vector between the signal at the 

equalizer input and desired response CR and Cp . This 

problem is solved by the following system of simultaneous 
equations: 
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where sww H=)(c  is a linear function in w and s  is a 
column vector of an M-dimensional orthonormal basis 
representing our constraint. By solving (6) for *λ  and after 
some algebra we find: 

CC pwR =    (7) 

where CR  has K null rows and Cp has the same K null 

elements. Therefore, CR  has rank M-K and the number of 

equations of our constrained optimization problem is reduced 

to M-K.  In (7) we can eliminate the row ki  and the column 

ki of CR , where K1,...,iii k = , K<M, are the K null 

positions in vector w . Such elimination results in a new set of 
Wiener-Hopf equations, now of dimension M-K: 

''' pwR =    (8) 

The vector w  representing the EIR is determined from 'w  
by including the K null components on the positions 

K1,...,iii k = , K<M. 

4. MSE-BASED APPROACH FOR TAP-WEIGHT 
SELECTION  

Here we present an MSE-based method for tap-weight 
selection in the equalization of sparse channels. The objective 
of the proposed method is to keep the equalizer aware about 
the power level of the averaged instantaneous squared error, in 
order to decide correctly the start of the tap-weight selection 
process.  This problem can be formulated in a recursive way 
by the following set of equations: 
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where )(im  is a first-averaged instantaneous squared error 

obtained from averaging N times the last P values of )(2 nek  

at each P iterations of the LMS algorithm, with NPi ,...,1= , 

such that NP  is the number of training symbols used. The 
values of )( im  are used to obtain a second-averaged 

instantaneous squared error expressed by 
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where )(kS  is an average of all )(im  until the k-th iteration. 

From (10) and (11) we rewrite )(kS in a recursive fashion: 
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where kk /1=α . The tap-weight selection method must 

starts when the difference between )(kS  and )1( −kS  is 

below a threshold 1λ , suff iciently small to guarantee that the 
steady state of the LMS algorithm was achieved. 
At this point the selection of the most important coeff icients 

starts up. The magnitude of each tap-weight iw  is compared 

to that of the maximum tap-weight máxw and iw  is considered 

as a negligible tap-weight if it’s below a given percentage of 

máxw  i.e. iw < 2λ máxw . The value for 2λ must be carefull y 

chosen. In our simulation results, values for 

both 1λ and 2λ was empiricall y establi shed for some sparse 
channel models. 

5. SIMULATION RESULTS 

Computer simulation results are presented here to demonstrate 
the performance of the MSE-based criterion for tap-weight 
selection of linear equalizers. Sparse channel models 
presented in section 2 are used here. LMS algorithm is used in 



 

all cases and comparisons between the classical and the 
proposed methods are made from the observation of learning 
curves and impulse responses. 

5.1. Wiener Solution for a Simplified Sparse Channel 
Model: Relationship between CIR and EIR 

The two figures below shows the influence between the 
multipath delays of a simpli fied channel over the Wiener EIR. 
Signal-to-Noise Ratio (SNR) is set to 30dB and M =9. EIR 
components considered. We observe that the number of zero 
components between the non-zero components of the CIR 
appears along the horizon of time of the Wiener equalizer. 
This suggests the CIR may be inferred from the EIR. 

 
Figure 5:Impulse response behavior of an arbitrary channel as the 

multipath delay varies. 

 

Figure 6:Impulse response behavior of the Wiener equali zer for all 
the channel situations above, in that sequence. 

 

5.2.  MSE Behavior due to the TWS method: a First 
Approach 

Here, as well as in and in the section 5.3, we are concerned to 
evaluate the impact caused by the selection of the most 

important tap weights of a linear equalizer for a simpli fied 
sparse channel. As we explained in section 4, here we 
eliminate (force to zero) those tap weights that are considered 
to be negligible. The main difference here is the supposition 
that the equalizer has a priori knowledge about the number of 
iterations necessary to the covergence of the LMS algorithm. 
Therefore (10) and (12) are not used yet. Results for MSE-
based tap-weight selection will be shown later in section 5.4. 

The channel model described by (3) is used with 15.01 =c , 

41 =k , 8.02 =c and 82 =k . An M=11 tap-weight linear 
equalizer is considered here and the LMS step-size parameter 
is set to 0.045. The SNR is 30dB and the mean square error 
behavior was evaluated for 500 iterations for binary phase 
shift keying (BPSK) symbols. After 250 iterations, when the 
steady state of LMS has already been achieved, the tap-weight 

selection starts. The threshold 2λ  of the TWS method is set to 
0.2. From figure 7 we observe that at the iteration immediately 
after the first tap-weight selection the MSE shifts 2.5dB 
downward. The horizontal li ne indicates the minimum MSE 
obtained from the classical Wiener solution.  

 
Figure 7: MSE behavior when negligible tap weights are eliminated 
from the LMS adaptation at iteration number 250. 

Figure 8 shows the impulse response of the trained equalizer 
compared to the classical Wiener solution. We see in the 
trained case, the tap-weight number four are considered to be 
negligible and is eliminated.  

 
Figure 8: Impulse response of both trained and Wiener equali zers. 



 

5.3. Symbol Error Rate (SER) Performance of the 
Tap-Weight Selection (TWS) Method  

For the same channel model and equalization parameters, the 
SER is shown in figure 9 according to the variation of the 
SNR. We observe there is a considerable gain in performance 
when selection of tap weights is done. 

 
Figure 9: Symbol error rate for an adaptive li near equali zer with 
selected and non-selected tap weights compared to that of the Wiener 
solution. We have used here the sparse channel hs(z). 

A key factor for the performance gain of this method is 
concerned to the definition of the appropriately moment in the 
training period to start the tap-weight selection. It is 
acceptable to state the best moment is situated immediately 
after the convergence of the equalizer in the MSE sense. In 
other words, after the convergence, the earlier we start the tap-
weight selection the smaller is the SER of the training period. 
Next section is dedicated to the application of the MSE-based 
tap-weight selection (MSE-TWS) method, which extracts 
information about the convergence in a way we explained in 
section 4. 

5.4. MSE-Based Tap-Weight Selection (MSE-TWS) 
Method for Adaptive Equalization of Sparse 
Channels. 

Here we consider an improved way to make the tap-weight 
selection of linear equalizers, when dealing with sparse 
channels. The MSE-based criterion is applied here for the 
adaptive equalization of the terrestrial HDTV channel, 
described and ill ustrated in section 1. An M=45 tap-weight 
li near equalizer is used. The step-size parameter of LMS 
algorithm is set to 0.025. The SNR is 30dB and the 

modulation is BPSK. Thresholds 1λ and 2λ are set to 0.01 and 
0.04, respectively. Figure 10 shows an improved performance 
when the MSE-TWS method is applied. The minimum MSE 
after the training period is about 1 dB below that obtained 
when all tap weights are used. We observe also a faster 
convergence for the MSE-TWS case. Moreover, from a total 
of 45 tap weights only 10 of them were used in the adaptation 
process. 

 

 
Figure 10: MSE performance of the MSE-TWS method for the 
terrestrial HDTV channel. 

6. CONCLUSIONS AND PERSPECTIVES 

We conclude that the proposed MSE-TWS method for the 
equalization of wireless channels large multipath delay 
constitutes a practical solution for broadcast technologies, as 
HDTV. A considerable computational resource saving can be 
obtained by using only a few tap-weights, as well as an 
improved performance can be achieved. Furthermore, this 
technique may be useful for systems with a high bit-rate as the 
next generation mobile-radio systems, where the equivalent 
discrete-time CIR can be larger.   

To sum up, in the near future, we intend to apply the TWS 
method in blind equalization criteria. Future studies include an 
extension of the MSE-TWS method to other adaptive 
algorithms and other equalization structures. A deeper 
theoretical analysis may be done in order to establi sh a more 
general relationship between the CIR and EIR for channels 
with large multipath delay. 
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