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ABSTRACT

In this work we exploit the sparse nature of digital radio
channels affected by large multipath delays towards
complexity reduction of adaptive equalization algorithms.
A sparse channel is defined here as the one having a few
nonzer o power ful taps separated by many negligible taps.
Theterrestrial High Definition Television (HDTV) channel
model is consider ed here as a practical example of a sparse
wireless channel. A tap-weight selection method is
formulated based on the magnitude relationship between
the negligible and the powerful tap weights of a linear
equalizer. The proposed method eliminates those tap
weights that are considered negligible and leave only the
most powerful ones. Compared to a conventional adaptive
equalizer its possible to achieve at least the same
performance using only the most important (power ful) tap
weights. Furthermore, the tap-weight selection (TWYS)
method results in a considerable computational resource
saving, which is proportional to the number of negligible
taps of the linear equalizer.

1. INTRODUCTION

The dasdcal problem of adaptive equalizaion has been
intensively studied along several years. The use of adaptive
and blind equalizers in wireless communication systems is
motivated by intersymbd interference (I1Sl) caused by
multi path delay spread in digital radio channels. In particular,
equali zation of sparse wirelesschanndls, i.e. those with alarge
multipath delay among its principal impulse response
components, has bee intensively studied in order to better
exploit its dructure. Under the assumption of ideal sampling
and working at the symbd rate, the length of the eguivalent
discrete-time CIR can be larger in systems with ahigh bit-rate,
such as the next generation mohileradio systems and
broadcast technologies. In particular, the terrestrial HDTV
discrete-time CIR for a symbd-rate of 4.88 Mbaud exhibits a
few edhoes, the “farthest” one having a time-delay of more
than 20 symbd intervals [1]. Such channel can be mnsidered
sparse due to its characteristics. The use of linear equalizersin
the eualizaion of sparse dannds with a large impulse
response may present an elevated computational requirement,
as the number of tap inputs is generally large. Some recent
works [3] show that the simultaneous use of forward and
backward prediction-error transversal filt ers (FPEF and BPEF)
under the mnstant-modulus (CM) criterion offers a better
robustness and a convergence rate faster than that of
conventional linear equalizers. In addition to this, few

equali zer taps are nealed to reduce greatly 1Sl, leading to an
inferior computational complexity. Other equalization
strategies can be found in [4], [5]and [6].

However, for sparse wireess channels, al these equalizaion
strategies are not concerned to the relationship between the
CIR and the EIR, which we study in thiswork. A tap-weight
seledion (TWS) method is proposed here motivated by the
presence of negligible tap weights in linear equali zers due to
the presence of negligible taps in a sparse CIR. For a sparse
channel the optimum Wiener solution can gives us an
indication of which tap weights areto be seleded. In thiswork
tap-weight seledion is done during the adaptation processvia
LMS algorithm through a periodicall y observation of the mean
square aror (MSE) followed by the observation of EIR
components and subsequent seledion of the most important
ones. In this work we develop a method to do the after. Our
simulations sow it results in an equalizer with few non-zero
tap-weights that lead at least to the same performance of
conventional equali zers with acomputational complexity gain.

The rest of this paper isorganized as follows. Sedion 2 briefly
describes the modd for a multipath channel as well as garse
channel models used in our computer simulations. Sedion 3
presents a constrained version of Wiener-Hopf equations for
sparse dhannds. Sedion 4 introduces the proposed MSE-
based method for tap-weight seledion. Our simulation results
areill ustrated in sedion 5 and sedion 6 states our conclusions.

2. SPARSE CHANNEL MODELS

The eyuivalent baseband dscrete-time impulse response for a
multi path channel corrupted by 1Sl can be represented as:
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where L is the number of ISI components, delayed of k time-
samples from the principal component By taking the z-
transform of bath sides of (1) we get:
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where z* represents a delay of k time-samples from the
principal component. If all values of k are greater than zerowe
say the dcannd mode is formed only by post-cursors
components. For this kind of channels we have a minimum
phase channd if c(k+1) < c(k), for all k. In the z-plane such
channels have all their zeros |located inside the unit circle. On



the other hand, if k assumes negative values the dannd is
clasdfied as non-minimum phase. In this work we deal with
bath possbilities. For the minimum phase @se we use
simplified sparse models, as in (3) and (4). Non-minimum
phase case is represented by the terrestrial HDTV channel
model, which will be detail ed later in this ssdion. Herewe use
the term “sparse”’ to designate a wireless channe with a few
powerful taps separated by many negligible taps. In a
simplified model for one delayed multi path, we @n start from
(2) and vary the multi path delay profile by varying the value
of k asin the foll owing:

h(z) =1+cz* ©)
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Figure 1. Example of sparse channel with one ISI component. The
CIR is obtained from (3) for k =5. We see amultipath delay of five
symbol intervalsis modeled here.

In figure 1 we seethe CIR of a simplified sparse dannel for
k=5. In another particular case of (2) we have an additional
term z* representing a seaond 1S| component with anegligible
power compared to the other two components and situated
symmetrically between them. The dannd modd is now
written as;

h,(z) =1+c,z™ +c,z " (4)

where 1< k1< k2 and ¢; << ¢,. Figure 2 ill ustrates this case.
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Figure 2: Example of sparse channel with two ISI components. The
CIR is obtained from (4) for k; =4 and k=8. This CIR models a
multi path channel with two echoes delayed of four and eight symbol
intervals respectively.

A practical example of a sparse channel occurs in digital
television broadcasting systems, popularly known as HDTV.
The analog CIR for L pathsis modeled as foll ows [1]:

hHDTV (t) = g(t) + z Ciem g(t _Ti) ©)

wherec;, @ and 1; representsrespedively the magnitude, phase
and time-delay of the ith path and g(t) is the impulse response
of araised cosine filter. An example of an HDTV channel is
obtained using the set of parameters in table 1. Figure 3
exhibits the analog version of its CIR and figure 4 shows the
discrete-time version (sampled at the symbd rate) [1].

Carri_er-
Multipaths | Delay (us) | e v (d';gf:; Rl
(C/N) dB

1 1153 | 01 247 229

2 2203 03 1512 229

3 5.046 0.2 638 229

Table 1: Multipath parameters (delay, magnitude and ptase) of the
terrestrial HDTV channel impulse response.
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Figure 3: Magnitude of the analog impulse response for the
terrestrial HDTV channel model. Observe the multi path delay is very
large. The largest one (farthest echo) ocaurs after 24 symbol
intervals.
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Figure 4: Sampled version of HDTV channel impul se response.




3. CONSTRAINED WIENER-HOPF EQUATIONS
FOR SPARSE CHANNELS

The presence of negligible dements in the optimum tap-
weight vedor of alinear equali zer refleds the sparse profil e of
channels. Let us suppose a sparse channel for which the CIR
and the EIR have the same length. The number of negligible
tap weights of a Wiener equalizer can be inferred from the
CIR. In a particular case of a sparse channd, illustrated in
figure 2, null taps sparates the nonzero taps and the spacing
among the nonzero taps isthe same. In such symmetrical cases
the number of null tap weights of the equalizer is exactly the
same as those of channd. Also, the spacing among the
nonzero tap weightsis the same as those of channel. However,
in amore general case, where thereis not such symmetry, this
is not verified. For a successully trained equalizer, null tap
weights never ocaur as a consequence of the misadjustment of
the adaptive algorithm and the noise power.

The motivation of this work is the presence of negligible
elements in the optimum Wiener solution, which we wish to
eliminate from the adaptive equalizaion process Therefore,
constrained Wiener-Hopf equations are formulated here,
asuming the tap weight vedor has me a priori null
elements. Our constrained optimizaion problem is based on
the method of Lagrange multipliers [2].

Let f (W) = E[| e(n) |*] be areal-valued function we wish to
minimize, where &(n) is the eror between the desired
response d(n) and the output y(n) of the eyualizer.
Asaming W isthe M by 1 tap weight vedor of the equali zer

with K null e ements, we wish to find the mnstrained versions
of the correlation matrix of the signal at the equalizer input
and the aosscorrdation vedor between the signal at the

equalizer input and desired response R.and p.. This
probem is lved by the following system of smultaneous
equations:

of 0
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(Re[A*c(w)]) =0 (6)

where ¢(W) =w"'s is alinear function in wand S isa
column vedor of an M-dimensional orthonormal basis

representing our constraint. By solving (6) for A* and after
some algebra we find:

Rcw =pc (7)

where R has K null rows and p has the same K null

elements. Therefore, R has rank M-K and the number of
equations of our constrained optimization problem is reduced
to M-K. In (7) we @n eiminate the rowi, and the @lumn

i,of Rc, where i, =ij,... I, K<M, are the K null

positionsin vedor W . Such elimination resultsin anew set of
Wiener-Hopf equations, now of dimension M-K:

R'w'=p’ ®
The vedor W representing the EIR is determined from w'

by including the K null components on the positions
B Sy ) KM,

4. MSE-BASED APPROACH FOR TAP-WEIGHT
SELECTION

Here we present an MSE-based method for tap-weight
seledion in the equalization of sparse dhannels. The ohjedive
of the proposed method is to keep the equalizer aware about
the power level of the averaged instantaneous gjuared error, in
order to dedde rredly the start of the tap-weight seledion
process This problem can be formulated in a reaursive way
by the foll owing set of equations:

=]
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m(i) = 5 nZek (n) (10)

where m(i) is a first-averaged instantaneous sjuared error

oltained from averaging N times the last P values of € (Nn)
at each Piterations of the LMSalgorithm, with i =1,..., NP,

such that NP is the number of training symbds used. The
values of m(i) are used to olain a sewnd-averaged

instantaneous gjuared error expressed by
1& .
S(k) =— i 11
(k) =1 Z m(i) (11)

where S(k) isan average of all M(i) until the k-th iteration.
From (10) and (11) we rewrite S(K) in areaursive fashion:

S(k)=a,m, (k) +(1-a,)S(k-1) (12

where a, =1/K. The tap-weight seledion method must
starts when the difference between S(k) and S(k-1) is

below a threshold )\1, sufficiently small to guaranteethat the

steady state of the LM S algorithm was achieved.
At this point the selection of the most important coefficients

starts up. The magnitude of each tap-weight W, is compared

to that of the maximum tap-weight W, and W, isconsidered
as a negligible tap-weight if it’s below a given percentage of
W, 4 i€ W <A, W, ... The value for A, must be arefully
chosen. In  our simulation results, values for

bath A,and A,was empirically established for some sparse
channel models.

5. SIMULATION RESULTS

Computer simulation results are presented here to demonstrate
the performance of the MSE-based criterion for tap-weight
sdledion of linear equalizers. Sparse dannel models
presented in sedion 2 are used here. LM S algorithm isused in



all cases and comparisons between the dasdcal and the
proposed methods are made from the observation of learning
curves and impul se responses.

5.1.Wiener Solution for a Simplified Sparse Channel
Model: Relationship between CIR and EIR

The two figures below shows the influence between the
multi path delays of a simplified channel over the Wiener EIR.
Signal-to-Noise Ratio (SNR) is st to 30dB and M =9. EIR
components considered. We observe that the number of zero
components between the non-zero components of the CIR
appears along the horizon of time of the Wiener equali zer.
This suggests the CIR may be inferred from the EIR.

Figure 5:Impulse response behavior of an arbitrary channel as the
multi path delay varies.

Figure 6:lmpulse response behavior of the Wiener equali zer for all
the channel situations above, in that sequence.

5.2. MSE Behavior due to the TWS method: a First
Approach

Here, aswell asin and in the sedion 5.3, we are onceaned to
evaluate the impact caused by the sdedion of the most

important tap weights of a linear equalizer for a simplified
sparse channgl. As we eplained in sedion 4, here we
eliminate (forceto zero) those tap weights that are mnsidered
to be negligible. The main difference here is the supposition
that the equalizer has a priori knowledge about the number of
iterations necessary to the mvergence of the LMS algorithm.
Therefore (10) and (12) are not used yet. Results for MSE-
based tap-weight seledion will be shown later in sedion 5.4.

The channel model described by (3) is used with ¢, =0.15,
k, =4, c, =0.8and k, =8. An M=11 tap-weight linear
equali zer is considered here and the LMS step-size parameter
is &t to 0.045 The SNR is 30dB and the mean square eror
behavior was evaluated for 500 iterations for binary phase
shift keying (BPX) symbds. After 250 iterations, when the
steady state of LMS has already been achieved, the tap-weight
seledion starts. Thethreshold A, of the TWS method is st to
0.2. From figure 7 we observe that at the iteration immediately
after the first tap-weight sdedion the MSE shifts 2.5dB

downward. The horizonta i ne indicates the minimum MSE
obtained from the dasscal Wiener solution.
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Figure 7: MSE behavior when negligible tap weights are diminated
from the LM S adaptation at iteration number 250,

Figure 8 shows the impulse response of the trained equali zer
compared to the dasdcal Wiener solution. We see in the
trained case, the tap-weight number four are mnsidered to be
negligible and is eliminated.

Trained Equalizer

u1234557|91u

Wiener Equalizaer

Figure 8: Impulse response of both trained and Wiener equali zers.



5.3.Symbol Error Rate (SER) Performance of the
Tap-Weight Selection (TWS) Method

For the same channel model and equali zation parameters, the

SER is down in figure 9 acoording to the variation of the

SNR. We observe there is a considerable gain in performance

when seledion of tap weightsis done.
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Figure 9: Symbol error rate for an adaptive linea equalizer with
selected and ron-selected tap wei ghts compared to that of the Wiener
solution. We have used here the sparse channel hy(2).

A key factor for the performance gain of this method is
concerned to the definiti on of the appropriately moment in the
training period to start the tap-weight sdedion. It is
acceptable to state the best moment is stuated immediately
after the cnvergence of the equalizer in the MSE sense. In
other words, after the amnvergence, the exlier we start the tap-
weight seledion the smaller is the SER of the training period.
Next sedion is dedicated to the application of the M SE-based
tap-weight sdedion (MSE-TWS) method, which extracts
information about the mnvergencein a way we eplained in
sedion 4.

54.MSE-Based Tap-Weight Selection (MSE-TWS)
Method for Adaptive Equalization of Sparse
Channels.

Here we mnsider an improved way to make the tap-weight
sdledion of linear equalizers, when dealing with sparse
channels. The MSE-based criterion is applied here for the
adaptive equalization of the terrestrial HDTV channd,
described and illustrated in sedion 1. An M=45 tap-weight
linear equalizer is used. The step-size parameter of LMS
algorithm is st to 0.025 The SNR is 30dB and the

modulation is BPK. Thresholds A, and A, are set to 0.01 and

0.04, respedively. Figure 10 shows an improved performance
when the MSE-TWS method is applied. The minimum MSE
after the training period is about 1 dB below that obtained
when all tap weights are used. We observe also a faster
convergence for the MSE-TWS case. Moreover, from a total
of 45 tap weights only 10 of them were used in the adaptation
process

No Tap Weight Selection

Mean Square Error (dB)

Tap Weight Selectjon (MSE-TWS)

500 1000 1500
Trainning Symbols

Figure 10: MSE performance of the MSE-TWS method for the
terrestrial HDTV channel.

6. CONCLUSIONS AND PERSPECTIVES

We mnclude that the proposed MSE-TWS method for the
equalization of wireless channds large multipath delay
congtitutes a practical solution for broadcast technologies, as
HDTV. A considerable momputational resource saving can be
obtained by using only a few tap-weights, as wdl as an
improved performance @n be achieved. Furthermore, this
technique may be useful for systems with a high bit-rate asthe
next generation mohile-radio systems, where the equivalent
discrete-time CIR can be larger.

To sum up, in the near future, we intend to apply the TWS
method in blind equali zation criteria. Future studiesinclude an
extenson of the MSE-TWS method to aher adaptive
algorithms and other equalizaion structures. A deeer
theoretical analysis may be done in order to establish a more
general relationship between the CIR and EIR for channels
with large multi path delay.
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