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Space-time codes based on quaternion algebras of
small volume

Carina Alves and Jean-Claude Belfiore

Abstract— We have seen in [13] a new reduction method for
the decoding of 2×2 algebraic space-time codes, called algebraic
reduction as been introduced. Algebraic codes such that the
volume of the Dirichlet’s polyhedron of its units group is small
are better suited for decoding using the method of algebraic
reduction. In this paper, we propose a new framework for
constructing a space-time code whose algebraic reduction behaves
better than the one of the Golden code.

Keywords— Algebraic reduction, maximal order, cyclic division
algebra, space-time codes.

Resumo— Vimos em [13] um novo método de redução para a
decodificação de códigos algébricos espaço-tempo 2×2, chamado
redução algébrica como foi introduzido. Códigos algébricos tais
que o volume do poliedro de Dirichlet do seu grupo de unidades
é menor, são mais adequados para a decodificação usando o
método da redução algébrica. Neste artigo, nós propomos uma
nova estrutura para a construção de códigos espaço-tempo cuja
redução algébrica se comporta melhor do que o código de Ouro.

Palavras-Chave— Redução algébrica, ordem maximal, álgebra
de divisão cı́clica, códigos espaço-tempo.

I. INTRODUCTION

Wireless communication systems may require new coding
techniques to combat the effect of fading channels. This re-
quired new algebraic tools, namely division algebras. Division
algebras are non-commutative algebras that naturally yield
families of fully-diverse codes, thus enabling to design high
rate, highly reliable space-time codes.

Up to now, the decoding of algebraic space-time codes has
been performed using their lattice representation. We want to
find the performance lattice reduction for the lattice generated
by the channel + code matrix, [3]. It is shown in the literature
that lattice reduction makes decoding easier. Lenstra-Lenstra-
Lovász (LLL) lattice reduction algorithm is the most widely
used due to its polynomial average complexity.

In [13], a new reduction approach has been proposed, called
algebraic reduction. Unlike existing decoding techniques, al-
gebraic reduction directly exploits the multiplicative structure
of the space-time code in addition to the lattice structure. Its
principle is to absorb part of the channel inside the codewords,
by approximating normalized channel matrices by codewords.

The algebraic reduction technique has then been extended
in [13] to the multiple-input multiple output (MIMO) case for
space-time block codes (STBC) based on maximal orders of
division algebras. The key idea is to approximate the channel
matrix by a unit of the corresponding maximal order.
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For division algebras of index greater than 2, characterizing
the unit group remains a difficult problem in computational
algebra (see the survey [7]).

However, the situation is much better understood in the case
of quaternion algebras (index 2), where the Swan algorithm
can be used to find a presentation of the unit group. We
focus here, exclusively on the case of 2 transmit and 2 receive
antennas. Once a presentation is known, an easy-to-implement
algorithm is able to find the best approximation of the channel
matrix as a product of the generators [13].

Algebraic codes such that the volume of the Dirichlet’s
polyhedron of its units group, V ol(PO1), is small are better
suited for decoding using the method of algebraic reduction
[13] since the approximation error is then reduced. This
volume is known a priori and only depends on the choice
of the quaternion algebra. In this paper we propose to build a
quaternion algebra such that V ol(PO1) is much smaller than
the volume of the polyhedron corresponding to the Golden
Code algebra studied in [13].

This paper is organized as follows: in Section II we present
introductory concepts; in Section III we introduce the system
model and a brief idea concerning algebraic reduction; in
Section IV we describe the structure of units group; in Section
V we present the Tamagawa Volume Formula. Finally, in
Section VI we present a new quaternion algebra and generators
of the group of units. Section VII concludes the paper.

II. CYCLIC ALGEBRAS, ORDERS AND DISCRIMINANTS

A. Definitions

Let L/K be a Galois extension of degree n such that its Ga-
lois group G = Gal(L/K) is cyclic, with generator σ. Choose
a nonzero element γ ∈ K. We construct a non commutative
algebra, denoted by A = (L/K, σ, γ), as follows:

A = L⊕ eL⊕ e2L⊕ · · · ⊕ en−1L

where e ∈ A is an auxiliary generating element subject to the
relations

xe = eσ(x) for x ∈ L and en = γ.

Recall that ⊕ denotes a direct sum. Such an algebra is called
a cyclic algebra. It is a right vector space over L, and as such
has dimension (A : L) = n.

Cyclic algebras naturally provide families of matrices
thanks to an explicit isomorphism between the split algebra
A⊗K L and the algebra Mn(L), the n-dimensional matrices
with coefficients in L.

An element x = x0 + ex1 + · · · + en−1xn−1 ∈ A has the
following standard representation as a matrix
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x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) · · · γσn−1(x2)
...

...
...

. . .
...

xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)

 .

We need a tool for identifying division algebras among the
cyclic algebras. Next proposition tells us when a cyclic algebra
is a division algebra.

Proposition 1: [18] (Norm Condition): The cyclic algebra
A = (L/K, σ, γ) of degree n is a division algebra if and only
if γn/p is not the norm of some element of L∗ for any prime
divisor p of n.

Due to the above proposition, the element γ is often referred
to as the non-norm element.

As mentioned in the introduction, characterizing the unit
group for division algebras of index greater than 2 is a difficult
problem in computational algebra. However, the situation is
much better understood in the case of quaternion algebras
(index 2). Therefore, we focus here on the case of 2 transmit
and 2 receive antennas.

The most important algebraic object for the design of lattice
codes from algebraic number fields is the ring of algebraic
integers. In division algebras, the analogous of this concept is
what is called a maximal order.

Definition 1: Suppose that L/K is a cyclic extension of
algebraic number fields. Let A = (L/K, σ, γ) be a cyclic
division algebra and let γ ∈ K∗ be an algebraic integer. The
OK−module

Λ = OL ⊕ eOL ⊕ · · · ⊕ en−1OL

where OL is the ring of integers of L, is a subring of the cyclic
algebra (L/K, σ, γ). We refer to this ring as the natural order.

We use the previous notation.
Definition 2: An OK-order O in A is a subring of A,

having the same identity element as A, and such that O is
a finitely generated module over OK and generates A as a
linear space over K. O is said to be maximal if it is not
properly contained in any other OK-order in A.

Definition 3: Let m = dimKA. The discriminant of the
OK-order O is the ideal d(Λ/OK) in OK generated by the
set

{det(TrA/K(xixj))
m
i,j=1 | (x1, · · · , xm) ∈ BO, i, j = 1, · · · ,m},

where BO = {x1, · · · , xn} is any OK− basis of O.

It is readily seen that whenever O ⊂ Γ are two OK-
orders, then d(Γ/OK) is a factor of d(O/OK). It turns out (cf.
[15, Theorem 25.3]) that all the maximal orders of a division
algebra share the same discriminant. In this sense a maximal
order has the smallest possible discriminant among all orders
within a given division algebra, as all the orders are contained
in a maximal one.

B. Finding Maximal Orders

We already saw that in the case of the Golden algebra the
natural order is maximal [18]. So clearly natural orders can
be maximal, but this does not always happen.

Recently, maximal orders have been proposed in [5] and
[18] as new tools to construct cyclic division algebra based
STBC ([17], [11]). It was shown in [18] that in order to
maximize the number of codewords in the available signal
space, i.e. to maximize the code density, one should look for
cyclic division algebras having maximal orders with minimal
discriminants. Luckily, the minimum determinant of the code
does not change when increasing the density in this way.
However, the construction of maximal orders is not obvious
and involves some advanced number theory.

Maximal orders are difficult to construct by hand. Luckily,
the construction algorithm from [6] is implemented in the
MAGMA software [9]. This algorithm computes a maximal
order O for a quaternion algebra A.

III. SYSTEM MODEL AND ALGEBRAIC REDUCTION

A. System model
We consider a quasi-static 2× 2 MIMO system employing

a space-time block code. The received signal is given by

Y = HX +W, X, H, Y, W ∈M2(C) (1)

The entries of H are i.i.d. complex Gaussian random
variables with zero mean and variance per real dimension
equal to 1

2 , and W is the Gaussian noise with i.i.d. entries of
zero mean and variance N0. Channel matrix H is supposed to
be perfectly known at the receiver. X denotes the transmitted
codeword.

B. Algebraic Reduction
In this paper we give a brief idea of the principle of

algebraic reduction. For details see [13].
First of all, we normalize the received signal. In the system

model (1), channel matrix H has nonzero determinant with
probability 1, and so the system can be rewritten as

H =
√

det(H)H1, H1 ∈ SL2(C).

Therefore the system is equivalent to

Y1 =
Y√

det(H)
= H1X +W1.

Algebraic reduction consists in approximating the normalized
channel matrix H1 with a unit U of norm 1 of the maximal
order O of the algebra of the considered STBC, that is an
element U of O such that det(U) = 1.

In the general case, the approximation is not perfect, i.e.,
H1 6= U, so we must take into account the approximation error
E, i.e., H1 = EU.

We have seen that ideally the error term E should be unitary
in order to have optimality for the Zero Forcing (ZF) decoder,
so we should choose the unit U in such a way that E =
H1U

−1 is quasi-orthogonal. This requires that Frobenius norm
||E−1||2F should be minimized1:

Û = argmin
U ∈ O

det(U) = 1

||UH−11 ||2F . (2)

1Remark that since det(E) = 1, ||E||2F = ||E−1||2F .
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IV. THE STRUCTURE OF THE GROUP OF UNITS

In [13] an algorithm to find the nearest unit U to the
normalized channel matrix H1 with respect to the criterion (2)
was described. In order to apply it, we need to understand the
structure of the group of units O1 = {U ∈ O∗ | det(U) = 1}
of the maximal order O.

The search algorithm is based on the action of the group on
a suitable space. We use the fact that O1 is a discrete subgroup
of the special linear group SL2(C), and consider the action
of SL2(C) on the hyperbolic 3-space H3 ([4],[8]).

We refer to the upper half-space model of H3
:

H3
= {(z, r) | z ∈ C, r ∈ R, r > 0}. (3)

Given a matrix

M =

(
a b
c d

)
∈ SL2(C),

its action on a point P = (z, r) is defined as M(z, r) =
(z∗, r∗) with

z∗ =
(az + b)(c z + d) + acr2

|cz + d|2 + |c|2r2
,

r∗ =
r

|cz + d|2 + |c|2r2
.

The action of M and −M is the same, so there is an induced
action of PSL2(C) = SL2(C)/{1,-1}.

All the information we will gain about the group O1 will
thus be modulo the equivalence relation M ∼ −M, we denote
by PO1 its quotient with respect to this relation.

Consider the action of PSL2(C) on the special point
J = (0, 1) = j which has the following nice property ([4]
Proposition 1.7):

∀M ∈ SL2(C), ||M ||2F = 2 cosh ρ(J,M(J)). (4)

As anticipated in Section III, given the normalized channel
matrix H1 ∈ SL2(C) we want to find

Û = arg min
U∈O1

||UH−11 ||2F
= arg min

U∈O1
cosh(ρ(J, UH−11 (J)))

= arg min
U∈O1

ρ(J, UH−11 (J))

= arg min
U∈O1

ρ(U−1(J), H−11 (J))

since U is an isometry.
Remark 1: If M ∈ U(2) is unitary, then g leaves every

point of H3 fixed ([4] Proposition 1.1). Then by conside-
ring for example the mapping PSL2(C) → H3 that sends
M to M(J), one can identify H3 with the quotient space
PSL2(C)/U(2).

V. TAMAGAWA VOLUME FORMULA

Poincaré’s theorem establishes a correspondence between a
set of generators of the group and the isometries which map
a facet of the polyhedron to another facet. All the polyhedra
are isometric, and they cover the whole space H3

, forming a
tiling. We want to approach the points into H3 by the closer

unit. Thus, when the volume is smaller the units are closer
to each other and therefore the approximation is better. This
volume is known a priori and only depends on the choice of
the algebra A.

Theorem 1: (Tamagawa Volume Formula). Let A be a
quaternion algebra over K such that A⊗Q R ∼=M2(C). Let
O be a maximal order of A. Then the hyperbolic volume is
given by,

V ol(PO1) =
1

4π2
ζK(2)|DK |3/2

∏
p|δO

(Np − 1).

In the previous formula, ζK denotes the Dedekind zeta
function2 relative to the field K, DK is the discriminant of
K, δO is the discriminant of O, p varies among the primes of
OK , and Np = [OK : pOK ], where OK is the ring of integers
of K.

We have seen in [13] that algebraic codes such that
V ol(PO1) is small are better suited for the method of algebraic
reduction. So, we wish to build a quaternion algebra over K,
such that |DK | and ζK are as small as possible. Furthermore,
as can be seen in Theorem 1, the calculation of V ol(PO1)
depends on a maximal order of the quaternion algebra. In [13]
a quaternion algebra over K = Q(i) was built. In this case,
|DQ(i)| = 4 and ζQ(i) = 1.50670301 · · · .

VI. CONSTRUCTING A SPACE-TIME CODE WITH A SMALL
VOLUME

A. The Maximal Order

In this paper we propose to construct a quaternion algebra
A = (L/K, σ, γ) over K = Q(ω), where σ : L → L is the
generator of the Galois group of L/K and ω = (−1+i

√
3)/2.

The reason we choose K = Q(ω) is because |DQ(ω)| = 3 and
ζQ(ω) = 1.285190 · · · are both smaller than the same quantities
for Q(i). Now, according to Proposition 1, we need to choose
γ ∈ K∗ which is not a norm of elements of any elements in L
and such that |γ| = 1, which guarantees that the same average
energy is transmitted from each antenna and each channel use.
This limits the choice to γ = ±1, ±ω, ±ω2. Next Proposition
shows that γ = −ω satisfies the norm condition for a suitable
extension L/Q(ω) which leads to a quaternion algebra of
small volume.

Proposition 2: Let L = Q(ω, θ), ω = (−1 + i
√

3)/2 and
θ =
√

2 + ω. Then the element γ = −ω is not a relative norm
of any x ∈ L, i.e, NL/Q(ω)(x) 6= −ω, ∀x ∈ L.

Proof: See appendix.
Now we can consider the cyclic division algebra (or equiva-

lently quaternion algebra in this case) A = (L/Q(ω), σ,−ω)
over L, and we can represent all its elements by 2×2 matrices:

X =

[
x1 0
0 x2

]
+

[
x3 0
0 x4

]
.

[
0 1
−ω 0

]
=

[
x1 x3
−ωx4 x2

]
,

2The Dedekind zeta function is defined as ζK(s) =
∑
I

([OK : I])−s,

where I varies among the proper ideals of OK .
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where x1, x2, x3, x4 ∈ L.
But here, the natural order is not a maximal order. By using

the MAGMA software, we compute a maximal order O for
the quaternion algebraA with basis {1, θ, e, θe}. This maximal
order O can be written as

O = Z[ω]⊕ Z[ω]θ ⊕ Z[ω]e⊕ Z[ω]δ

where δ = ω + (ω + 1)θ + (ω + 1)e+ θe and

e =

(
0 1
−ω 0

)
.

Now we are ready to calculate the value of
∏
p|δO

(Np − 1)

which is

(N2Z[ω] − 1) · (N(2+ω)Z[ω] − 1) = 2 · 3 = 6.

Therefore, by Theorem 1 V ol(PO1) = 1.0338314. This
volume is smaller than the one of the Golden Code algebra
(4.885149838 · · ·).

B. Units and Generators

According to the principle of algebraic reduction we need
to approximate the normalized channel matrix with a unit of
norm 1 of the maximal order O of the algebra given above.

Remark 2: The set O1 = {U ∈ O∗ | det(U) = 1} is a
subgroup of O.

In fact, if U is a unit of the Z[ω]-order O, then
NA/Q(ω)(U) = det(U) is a unit in Z[ω], that is, det(U) ∈
{1,−1, ω,−ω, ω2,−ω2}.O1 is the kernel of the reduced norm
mapping

N = NA/Q(ω) : O∗ → {1,−1, ω,−ω, ω2,−ω2}

which is a group homomorphism, thus it is a subgroup of O.
We have that N is surjective since there are elements 1, e+

ω, δ, e, ω, ω(e+ ω) in O∗ such that N(1) = 1, N(e+ ω) =
−1, N(δ) = ω, N(e) = −ω, N(ω) = ω2, N(ω(e + ω)) =
−ω2. So {1,−1, ω,−ω, ω2,−ω2} ∼= O∗/O1, and O1 is a
normal subgroup of index 6 of O∗.

Our problem is then reduced to studying the subgroup
O1. In particular, we need to find a presentation of this
group: a set of generators S and a set of relations R among
these generators. In fact, one can show that O1 is finitely
presentable, that is it admits a presentation with S and R finite.

Here, we also have to find the unitary units which, once
multiplied by any other unit will not change the Frobenius
norm of that unit. In fact, they have no incidence in the
approximation of the normalized channel matrix since the
metric we want to minimize is the Frobenius norm. So, after
some calculus we found that this set of unitary units was the
subgroup U = {1,-1, Ω,−Ω} where

Ω =

(
0 ω
−ω2 0

)
,

which is not a normal subgroup of O1.
We know that the set U stabilizes J = (0, 1), so we need

to consider the action of PSL2(C) on the point PJ, P ∈
SL2(C) such that the stabilize of PJ is {1,-1}.

Therefore of (4) we have that

||UH−11 ||2F = 2 cosh ρ(PJ, PuP−1Ph−11 P−1(PJ)),

that is, the units U and the normalized channel matrix H1 ∈
SL2(C) are conjugated by P.

Considering the point PJ = (0.00002, 1.00002) and the
algorithms implemented of [14] using MAGMA software we
found a Dirichlet’s polyhedron with 26 faces, 72 edges and a
set minimal of generators for PO1 = O1/{1,-1} is {u, g1, g2}
where,

u =

(
0 ω
−ω2 0

)
(unitary unit)

g1 =

(
−1− θ

2 −
ω
2 −

θω
2 − 1

2 + θ
2

−1− ω + θω
2 −

ω2

2 −1 + θ
2 −

ω
2 + θω

2

)

g2 =

(
− θ2 −

ω
2 −

θω
2

1
2 + θ

2 − ω
−ω + θω

2 + ω2

2
θ
2 −

ω
2 + θω

2

)
A set of relations among these generators, vertices and

action of the generators on the vertices of the Dirichlet
polyhedron will be given in a long paper.

C. Simulation result

Fig. 1. Performance of algebraic reduction followed by ZF decoder using
infinite lattice.

Figure 1 shows the performance of algebraic reduction
followed by ZF decoder using infinite lattice by comparing
the Golden code and the New code. One can see that there is
a significant gain compared to the Golden code.

VII. CONCLUSION

In this paper we have introduced a new cyclic division alge-
bra based on quaternion algebras and have found a maximal
order in this algebra which can be an interesting candidate
for space-time coding. For this new algebra, V ol(P) is much
smaller than the volume of the polyhedron corresponding to
the Golden Code algebra. Algebraic codes such that V ol(P)
is smaller are better suited for decoding using the method
of algebraic reduction. Our simulation results show that in
this case there is a significant gain compared to the Golden
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code. The quality of approximation by a unit is related to the
maximum radius Rmax of the fundamental polyhedron, while
The speed of the algorithm depends on the cardinality r of a
minimal set of generators for the group. Finding good space-
time codes from quaternion algebras such that r and Rmax is
small is an interesting open problem.

APPENDIX

Proof Proposition 2:
Let x = a+ b

√
2 + w ∈ L with a, b ∈ Q(w) then we must

show that

NL/Q(w)(x) = (a+ b
√

2 + w)(a− b
√

2 + w)
= a2 − b2(2 + w) 6= −w,

i.e., that
a2 − b2(2 + w) = −w (5)

has no solution for a, b ∈ Q(w). We can lift this equation in
the (2 + w)-adic field K<2+w>.

Taking the valuations, ν = ν<2+w>, in both sides of (5):

ν(a2 − b2(2 + w)) = ν(−w) = 0, (6)

since w is an unity in Q(w).

Using the properties of valuation we have that

ν(a2 − b2(2 + w)) ≥ min{2ν(a), 2ν(b) + 1}.

As 2ν(a) 6= 2ν(b)+1 since 2ν(a) is even and 2ν(b) is odd,
we have

ν(a2 − b2(2 + w)) = min{2ν(a), 2ν(b) + 1} (6)
= 0.

So if
min{2ν(a), 2ν(b) + 1} = 2ν(a),

then ν(a) = 0, so a ∈ OK<2+w>
is a integer as well as b since

2ν(b) + 1 > 0. The other case is impossible since 2ν(b) + 1
is odd.

Thus from (5)

a2 − b2(2 + w) mod(< 2 + w >) = −wmod(< 2 + w >)
a2 = −wmod(2 + w). (7)

We can rewrite (7) as

a2 ≡ [−(2 + w) + 3− 1] mod(< 2 + w >).

Since we have OK<2+w>/ < 2 + w > OK<2+w> ' F3,

a2 = −1 mod(< 2 + w >) inF3.

We conclude that −1 should be a square in F3, which is a
contradiction. So a2 = −1 has no solution in K<2+w>, but
Q(w) ⊂ K<2+w> then a2 has no solution in Q(w), i.e., (5)
has no solution for a, b ∈ Q(w).
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