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ABSTRACT

Results that can be considerate as classicals from self-similar
model paradigm are showed in this work. All measurements
and results presented here were based on data traffic traces
gathered in our network gateway using a simple yet reliable
and efficient method. Several statistical methods, to infer
an unbiased and well defined Hurst parameter, are also re-
viewed. Some important queuing performance measurements
with both fractal and Markovian-type models are also pre-
sented.

1. INTRODUCTION

This work presents a survey, in an easy-to-read way, from
those results obtained in the few past years. As it is vastly
known, self-similarity has turned a “classical” and well estab-
lished concept inside the network performance and traffic en-
gineering areas. It is well-known that self-similarity matches,
in a parsimonious way, the actual statistical data traffic be-
havior, and it seems that nobody could argue against it. Thus,
self-similarity or its concomitant long-range dependence char-
acteristic in computer networks present a fundamentally dif-
ferent set of problems to people doing analysis and/or de-
sign of networks, and many of the previous assumptions upon
which systems have been built could not be longer valid in the
presence of this fractal behavior. This feature has added a
new dimension to the teletraffic modeling and analysis world.
The aggregated IP datagrams traces to be analyzed were ob-
tained in our network. The method to get it is simple yet
reliable. Basically it uses the Simple Network Management
Protocol (SNMP) and could be used either at network inter-
face card (NIC layer two protocol to get Byte streams) or IP
network level (layer three protocol to get datagrams).

The impact of this fractal characteristic to modern high-speed
networks, like Asynchronous Transfer Mode (ATM) networks
in a general sense, is reviewed. The paper is outlined as fol-
lows. Section 2 explains the method that has been used to
gather data traffic from our network. Section 3 gives a briefing
about the Hurst parameter. Section 4 shows a time-frequency
analysis performed over the collected data. In order to esti-
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mate the Hurst parameter, Section 5 outlines six well-known
methods. Section 6 explains the fractional Gaussian noise
process. Some important performance measurement results
from a simulation scenario built for our purposes are pre-
sented in Section 7, these performance tests have been done
either with fractal and Markovian-type models in order to
show their main differences. Finally, Section 8 presents the
major conclusions of this work.

2. TRAFFIC SAMPLES GATHERING

Fig. 1 shows the method used to gather the aggregated Inter-
net (IP) data traffic, as this figure shows, the Network Con-
trol Center (NCC) is the system manager that keeps track-
ing TP datagrams traffic through the gateway. The method
is quite simple yet reliable. Basically, the SNMP software
[6] was used. The agent information, obtained via SetRe-
quest/GetResponse primitive functions to its Management In-
formation Base (MIB) [6], was stored to be processed later on.
]
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Figure 1. Method used to gather the aggregated Internet
traffic.
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Fig. 2 shows one time series of aggregated IP traffic collected
using the method above. In order to infer self-similarity, many
Hurst parameter estimation methods were applied over such
huge time series sets.
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Among self-similar stochastic processes, there exit either de-
terministic and statistical ones. Deterministic self-similarity
implies in a similar (or equal) structure whatever the obser-
vational scale is. Now, stochastic self-similarity appears only
in a statistical context, that is, whatever the observational
scale is, the statistical properties (at least up to 2"¢ order)
are quite similar and are degenerated in a very slow way, for
this reason they are also called as slow stochastic processes.
Fig. 3(a) shows a fern leaf that belongs to those determin-
istic self-similar objects, in this case, “space”’ constitutes the
observational scale, as this figure shows, the whole fern leaf
differs of their branches only by a linear scale factor. Fig. 3(b)
shows the LAN traffic collected at Bellcore (now Telcordia)
between August 1989 and February 1992 [1 — 3], represents
a statistical self-similar process, but now, “time” constitutes
the observational scale. This scale independence character-
istic is the main feature of fractal processes, as fig.3 shows,
such processes looks almost the same for many increasing or
decreasing observational scales. Therefore, self-similarity is a
general intrinsic concept of those fractal processes.

3. THE HURST PARAMETER

The Hurst! parameter, denoted by H, represents the degree
of self-similarity in any time series; it measures the variability
around the expected value of studied data. Mathematically
speaking, this parameter is a fractional number: 0 < H < 1.
Physically, this parameter has the following interpretation:

e If 0 < H < %, this is a singular case [7], the process
shows the anti-persistence phenomena, further the pro-
cess reveals a negative auto-correlation function, some-
times called as negative dependence. Even though this
region for practical purposes has not been used at all,
some work was made on [36].

o If H = %, the process presents random characteristics
and it is highly uncorrelated, inside the classical time se-
ries theory this value is very representative of those au-
toregressive and Markovian-type processes, all of them
present a short-range dependence (SRD) time character-
istic, that is, are memoryless processes. For this value
of H, autocorrelation function shows a fast exponential
decaying, its statistical behavior resembles a pure second
order white noise turning such processes statistical pre-
dictable. SRD processes have a well-developed queuing
theory but if applied to modern high speed networks this
classical theory could gives false optimistic performance.

o If % < H < 1, the process is self-similar and shows the
well-known time persistence phenomena, thus the process
is highly positively correlated [7], its correlation function

In the mid-1960, hydrologist Harold Edwin Hurst found an unex-
pected behavior (in many geophysical time series throughout the world,
overall when studied river Nyle’s annual stream-flow volumes) differing
from the classical theory behavior. Nowadays, this discovery is known
as the Hurst effect or Hurst phenomena. For example, river Rhine in
Germany, has an H ~ 0.5.

reveals an hyperbolic decaying, that is, this feature turns
such process as having some sort of memory, in other
words, it is a long-range dependence (LRD) process.
Lately, processes with an H parameter lying into this in-
terval are being used to model the statistical LAN/WAN
traffic behavior. Therefore, self-similarity and LRD are
physical and mathematical concepts to explain, in a par-
simony way, the highly dynamics observed in LAN/WAN
traffic over many time scales.
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Figure 3. Self-similar objects: (a) A (deterministic) fern
leaf and (b) (statistical) LAN traffic trace. Copyrigth of
“Transactions On Networking IEEE/ACM”.

Methods to estimate the Hurst parameter take full advantage
of the so-called aggregated process, as explained below.

3.1 The Aggregated Process

An appropriate definition, inside the context of classical time
series theory [3, 8], involves an aggregated stationary sequence
with an aggregation level equals m, given by X ](m). This
new time series is obtained by blocking the original stationary
sequence, X, over j non-overlapping blocks of size m, each
block is averaged (X; is the number of IP packets arriving in
the j-th time interval). Basically, aggregation and averaging
tend to smooth the structure of the original time series, X;.
This new sequence, for m > 1, stills stationary and it is known
as the aggregated process, mathematically is given by

jm

X =2 )Xi] M

i=(j—1)m+1
Note that the aggregated process concept is quite different

from that of aggregated traffic concept, the latter is the origi-
nal time series, X}, the former has to be further processed to

become the aggregated process, X J(m), itself.



3.2 Aggregated Traffic and Gaussian Processes

A mathematical model that has been used [3, 12, 13] to
characterize aggregated IP datagrams traffic is the fractional
Gaussian noise? (fGn) model, which is derived of the frac-
tional Brownian motion (fBm), this process is the only exactly
second-order self-similar stochastic Gaussian process. The
self-similar characteristic observed in aggregated LAN/WAN
traffic can be emulated in a parsimony way through this model
keeping the familiar Gaussian distributions. In order to gen-
erate fBm traces the random midpoint displacement algorithm
[10, 11] was used. To this end, one needs only three pa-
rameters, namely, the mean value m, the variance value be-
tween samples given by ¢?t># and the Hurst parameter, H,
for H = 0.5 one has the ordinary Brownian (random walk)
process. All those features makes the fBm one parsimonious
model. Although it was observed that aggregated traffic is
less Gaussian than expected [31], for practical issues the fBm
increments [12] can be a good model to work with.

A process that has been derived from any self-similar process
through increments is known as a fractional noise. Further-
more, if its probability density function (PDF) has a char-
acteristic exponent, a =~ 2, then one is faced with the fGn
[7, 8, 27]. A stable random variable X with index « is called
a-stable, this parameter deals with the PDF tail behavior,
it controls the burtiness of the random variable. Basically,
regardless of the behavior of the distribution for small val-
ues of the random variable, if the asymptotic shape of the
distribution is hyperbolic it is heavy-tailed, mathematically,
if P(X >2) xz7® asz — oo and 0 < a < 2, then the
marginal distribution has a heavy-tailed behavior. The sim-
plest heavy-tailed distribution is the Pareto distribution, this
distribution is hyperbolic over its entire range and it is use-
ful to represent LAN/WAN traffic network distribution func-
tions regarding the sojourn time sessions and file sizes on Web
servers [3, 16, 17].
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Figure 4. Symmetric stable distributions with varying
a, as a — 0 the distributions tails get heavier.

Fig.4 shows the heaviness of the tails of such distributions
where a set of symmetric standard stable distributions is
given with « varying from 2 (the Gaussian case) to 0.5 (non-
Gaussian cases). The mathematical relationship between «
and H, is given by H = (3 —a)/2 [3, 32].

2The fGn has a colored noise spectral behavior (1/f%), the color
chosen for this process was the brown color, note that the fGn has nothing
to do with such a color. It was so in honor to the research work made
by English botanist Robert Brown (1827).

4. TIME AND FREQUENCY ANALYSIS

Fig.5(a) reveals the intrinsically LRD of gathered IP traf-
fic. The hyperbolic decaying rather than classical exponential
(that SRD processes present) is clear. This behavior is also
known as the persistence phenomena. When a spectral analy-
sis is performed, due reciprocal relationship between time and
frequency, such LRD characteristic is reflected at lowest fre-
quencies, that is, the spectral behavior blows up following a
power law, as v — 0, thus the process has a singularity (a pole)
near the origen. Moreover, it could be seen as an 1/ f“ noise.
Fig.5(b) shows this typical spectral behavior of mono fractal
processes like some colored noises (i.e., pink, red, brown) and
music [3, 15, 18] among many others physical processes.

Figure 5. Gathered IP data traffic analysis: (a) Auto-
correlation function (b) Spectral analysis.

5. ESTIMATION METHODS

Here, we outline six commonly and vastly used methods to
estimate the self-similar Hurst parameter. The average value
obtained by these methods will be used to generate syntheti-
cally fGn traces to emulate real LAN/WAN traffic traces.

5.1 The R/S Statistic

This method [3, 8, 9], infers the degree of self-similarity (via
the Hurst effect) of any stochastic process. Its relative ro-
bustness against changes in the marginal distribution of the
underlying process turns it particularly attractive. Briefly,
for a given set of observations, Xy; k = 1,...,n, this set is
subdivided into K non-overlapping blocks as in eq.(1). One
computes the rescaled adjusted range R(t;,n)/S(t;,n) for a
number of values n, where t; = |n/K|(i — 1) + 1 are the
starting points of the blocks which satisfy (¢t; — 1) +d < n.

Therefore
R(t;,n) = maz{0, W(t;,1), ---, W(ti,n)} —
_min{oa W(tial)a T W(tlan)} (2)

Where
k 1 k
Wt k) =D Xioajmr — k(ﬁ ZXtm'—l) (3)
j=1 j=1

For each value of n one obtains a number of R/S samples. For
small values of n there are K samples. The number decreases



for large values of n because of limiting condition on the ¢;
values mentioned above. According to this method, many
natural occurring time series appear to be well represented
by the following asymptotical law3, as n — oo

n
E [%] =cnf (4)
Where n is the sample size, ¢ is a positive constant not de-
pending of n and S(n) is the sample variance of X](m) (eq.(5)).
Recall that, in order to show self-similarity, H, must to be
well-defined in the interval 0.5 < H < 1. On the other hand,
observations X from a SRD process obey the relationship
given by the law proportional to n%3, this discrepancy is cur-
rently referred as the Hurst effect or Hurst phenomena. There-
fore, the law given by Einstein (1905) as n®®, was generalized
by Hurst (1954) to n with 0 < H < 1 (see Section 3).
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Figure 6. (a) The R/S statistic (b) Linear regression to
estimate the Hurst parameter.

Plotting log E[R(t;,n)/S(t;,n)] vs. log(n) results in what is
known a poz diagram. Next, a least squares line is fitted to
the points of the R/S plot. The R/S samples correspond-
ing to the smallest values of n are dominated by short-range
correlations. Samples of large values of n are statistically in-
significant if the number of samples per n is less than, say,
5. The slope of the regression line for these R/S samples
is an estimate for H (eq.(4)). Fig.6(a) makes possible to
show a well-defined Hurst parameter value. Fig.6(b) shows
the linear regression line fitted, given the following equation,
y = 0.89906x — 0.32998, therefore H = 0.899.

5.2 The Variance-time Analysis

Regarding time series analysis [8, 26], the sample variance,
S(n) = Var[X](m)], of the aggregated process (eq.(1)) can be
written as

2 m k
Varl X! = 21423 (1- —)r(k)] (5)
m = m
Where r(k) is the auto-correlation function of the aggregated
process. For LRD processes Y r(k) — oo is verified, such fea-
ture has never been observed in SRD processes. All SRD pro-

3This relationship is the actual definition of fractional Brownian
movement, if H = 0.5 the process becomes the ordinary Brownian mo-
tion. In 1905, Einstein used the entropy of an ideal gas to explain the
Brownian motion of a pollen grain suspended in water.

cesses, have an exponential decreasing. Regarding eq.(5), for
SRD processes, the autocorrelation function vanishes at larger

time scales and in this case Var[X(m)

;"] = 0% /m, that is, it van-
ishes as fast as m™!, this is a well-known classical time series
theory result [8]. On the other hand, LRD processes have
an hyperbolically decaying in their auto-correlation functions
(Fig.5(a)), thus Var[X J(m)] obeys the asymptotically relation-
ship [3, 8, 26], as m — oo

Var[X](m)] ~em™P (6)
Here, m indicates the aggregation level of the averaged pro-
cess, ¢ is a constant not depending of m, and 0 < 8 < 1.
Therefore, Var[XJ(m)] decays linearly, as m — o0, in a log-log
plot, with a slope flatter than —1 as depicted in Fig.7(a). This
figure is known as a variance-time plot, such plots are useful to
determine the degree of the asymptotic LRD behavior. The
variance-time plots are obtained plotting log Var[X ](m)] Vs.
log(m). In order to estimate (3, the slope of the least squares
fitted line is used, from which the Hurst parameter can be
determined using H =1 — @
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Figure 7. (a) The variance-time plot (b) Linear regres-
sion to estimate the Hurst parameter.

Usually the points with small values of m (the transient pe-
riod) and the few largest values of m (not accurate for finite
sequence) are ignored. Fig.7(b) shows the estimation proce-
dure, it gives, y = —0.31679z 4 5.7962 = S = —0.31679,
which in turn implies in H = 0.8416.

5.3 The Index of Dispersion (for Counts) Analysis

The index of dispersion for counts (IDC) is given by the
variance of the number of arrivals during a interval of time ¢
divided by the expected value of that same quantity. Fig.8(a)
shows the I DC analysis, this figure reveals the monotonically
linear behavior over many time scales, such behavior obeys
the following empirical mathematical law [3]

t (m)
Var( PP ¢ )
t (m)
B( T ")
Where ¢ is a finite positive constant independent of t. As
eq.(7) shows, a log-log diagram results in a straight line with
a slope equals 2H — 1. Therefore, making a linear regression

one computes the following equation: y = 0.67741z + 1.1002,
equating 2H — 1 = 0.67741 one obtains H = 0.838.

~ct?H1

IDC(t) = (7)
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Figure 8. (a) The IDC analysis (b) Linear regression to
estimate the Hurst parameter.

Nowadays, according with Section 3.2, peaked heavy tailed
processes, that is, processes having an IDC > 1 are useful to
represent the time duration of any point-to-point LAN/WAN
connection [4, 20] (i.e. the communication between any pair
of end workstations). In other words, the sojourn time in ON
(busy) state and/or OFF (idle) state must to be drawn from
a random variable with a heavy-tail marginal distribution [16,
21, 32]. It has been mathematically proven that when n end-
to-end (ON-OFF) source connections like telnet, ftp, http?
etc. are aggregate, in the limit when n — oo, we can fairly
approach an fGn [21] process, which will be the buffer input
process of any edge router.

5.4 The Periodogram Analysis

This method [3, 8] reveals the periodogram behavior near the
origin. Using the estimate periodogram based on Fourier tech-
nic, we have

2

1 al ijv

1) = 35— ‘ ;X]e (8)
Where X is the time series of length N and 0 < v < 7 is the
frequency. If the time series intrinsically has long-range de-
pendence its spectral density will be proportional to |v|' =24
as v — 0 (eq.(9)). A log-log regression thus provides an esti-
mate of H. Fig.5(b) shows such analysis, it is clear the power
law (1/f%) topology, as v — 0. The straight-line slope is an
estimate of 1 — 2H, hence H = 0.876.

5.5 The Maximum Likelihood Estimator of Whittle

The maximum likelihood estimator (MLE) of Whittle is used
to estimate the self-similar, H parameter, [23]. This MLE
provides asymptotically consistent and normally distributed
estimators of the unknown parameters of both Gaussian and
non-Gaussian time series. One important point that arises
with this method is to associate a topological structure for the
power spectral function to those time series obtained. If time
series from Fig.2 is considerate as an fGn, then its spectral
behavior [14, 24] is given asymptotically, as v — 0, by

fv) = Culv| 2"

4High layers (end-to-end) Internet communication protocols.

9)

Where Cg® is a constant [24] and v is the frequency. The
Whittle estimator is the value of vector n which minimizes
Q(n). Thus, given a data sample of size N, the estimation
process essentially involves minimizing the discrete version of
the MLE of Whittle

M
I Vj
Q=2 f('(/j,7)7)

Jj=1

(10)

Dealing with fGn implies that 7 is simply the parameter H,
[14]. M is the integer part of (N — 1)/2, v; are the usable
Fourier frequencies (v; = 27j/N), j = 1,2,...,[(N — 1)/2]
and I(v;) is the periodogram function as given by eq.(8). Re-
placing f(v) (eq.(9)), by its estimate and taking logarithms,
the function to be minimized is R(H) = Q(H) — 1, hence

M M
R(H) = log [% . Vﬂ(fg,){] —(2H - 1)% > log(y) (11)

After a properly data normalization, Fig.9 shows the mini-
mization procedure. Recall that such time series was forced
to obey the fGn asymptotically spectral behavior, as v — 0.
Confidence intervals can be found as 1.96 - o, where o is

R(H)
Ny
As depicted in Fig.9, the result using the MLE of Whittle
minimized eq.(11) for H = 0.861 £ 0.051. One variation of
the MLE of Whittle is the so-called MLE of Whittle local,
this is a semi-parametric estimator in that it only specifies
the parametric form of the spectral density when v — 0, this
estimator is also based on the periodogram (eq.(8)) [14, 24].

o =4x

(12)
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Figure 9. The MLE of Whittle applied on IP traffic
collected.

5.6 The Wavelet-based Estimator

Wavelet analysis is proving to be a very powerful tool for
characterizing behavior, especially self-similar behavior, over
a wide range of time scales. Wavelets basis functions are
self-similar themselves, thus a natural approach for analyz-
ing and synthesizing random fractals. As stated in [33, 34],
this method is based on what is known the Multi Resolution
Analysis (MRA), or its concomitant Discrete Wavelet trans-
form (DWT), which consists of splitting a time series (signal)
into a (low-pass) approximation and (high-pass) details, that
is, the key idea of the MRA consists in examining the loss

°Ch = [2/(2H +1) + 1/(H +2) — 2/(H + 1)].




of information (details) when going from one approximation
to the next one, and so on. Basically, the MRA consists in
rewriting the information of any dataset as a collection of
details at different resolutions and a low-resolution approxi-
mation. These are associated with the coefficients a, and d,,
respectively. Denoting as (t) the time series from Fig.2, then
z(t) = approx;(t) + Z?;J detail; () [33], therefore

J
Zazjk(ka +szz Jk\I’Jk (t) (13)

j=1 k

The term “approx; (t)” essentially being coarser and coarser
approximation of z(¢) means that ¢g needs to be a low-pass
function. The term “detail;(¢)”, is like a “differential” in-
formation, indicates rather that ¥y is a band-pass function,
and therefore a small wave, hence a wavelet. The parameters
bik(t) =279/2¢0(277t — k) and W, 1 (t) = 279/ (277t — k)
are the set of shifted and dilated functions of the scaling
function ¢ and the mother-wavelet Wy. Therefore, given a
scaling function ¢¢ and a mother-wavelet ¥y, the DWT is
a mapping from L?(R) — [*(Z) given by a,(J,k), k € Z
and d,(j,k), j = 1,...,J; k € Z as defined by the inner
products a,(J,k) = (z,¢;,(t)) and d,(j, k) = (z, ¥;x(t)).
Both coefficients, a, and d, are located on a dyadic, the de-
tails given by these coefficients are important. When going
from high resolution to lower resolution, the MRA gives rise
to details at larger time scales. This can be interpreted in
the frequency domain as band-pass filtering, going from high
to low frequencies with constant relative bandwidth. On the
other hand, spectral estimators (based on periodograms) may
easily get strongly biased due to the fact that constant band-
width mismatches the power-spectrum to be analyzed [35]. In
contrast, the wavelet constant relative bandwidth manages to
provide a perfect match. Given that the wavelet method has
some connections to the variance plot. Recalling the variance
expression when studying aggregated series X ](m) over dyadic
blocks of size 27, it means that: Var[detail;] ~ 2/CH=2).
This estimator could be very biased (not very reliable). In
the wavelet framework is necessary to study differences of ag-
gregated series. Regarding the simplest case one computes the
difference between points in non-overlapping blocks of size 2
as defined by the Haar wavelet. Consider now Y7*! as being
the series made by difference Y7, note that Y° is the data
series at highest time resolution.

1

Vit =07 (Vg = Y y)

(14)
Eq.(lA) hask=1,2,...,N/2jand j =1,2,.... The variance
of Y7 decay according to a similar power-law as above

[V7] v 20(2H1) (15)

It turns out that the variance is equal to the second order
moment. Since the expectation of Y is zero. In the frequency
domain, the variance, E[(Y?)?] = Var[Y7], is equivalent to
the signal energy in a frequency band depending on j. In

resume, this method computes the DWT, averages the squares
of the coefficients of the transform, and then performs a linear
regression on the logarithm of the average, versus the log of
j, the scale parameter of the transform. The result should be
directly proportional to H, such linear relationship implies
LRD. Then, taking logarithms in eq.(15) one obtains

log, [Var(detail;)] = (2H — 1)j + ¢ (16)
Where ¢ is a finite constant. This estimator has been proven
to be unbiased under very general conditions and efficient un-
der Gaussian assumptions. Then the wavelet estimator is very
efficient. It is also possible to evaluate measurement statistics
such as confidence interval, and weighted regression. Under
Gaussian and quasi-decorrelation of the wavelet coefficient hy-
pothesis and in the asymptotic limit, a closed-form for the
variance of the estimate of H can be obtained and is given by
[33] 0% = Var H[ji, j»], which in turn can be written as

of = (nj1l2n22) - (1 — 2(]+1)1(;221 T 272!}) (17)

Here, nj, = n/27" is the number of available coefficients at the
lowest scale involved in the linear fit, and J = j; —j>+1is the
number of scales (octaves) involved in the linear fit. Fig.10(a)
shows the wavelet-based method applied over the collected IP
datagrams and Fig.10(b) shows the linear regression equation
adjusted over obtained points. This wavelet-based analysis
gave the following Hurst value: H = 0.876 &+ 0.044.
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Figure 10. (a) The wavelet-based method (b) Linear
regression to estimate the Hurst parameter.

So far, a neatly well-defined Hurst parameter has been ob-
tained from IP datagrams traffic. Results are summarizes in
Table 1. Next step is to generate synthetic f{Gn traces follow-
ing real data traffic behavior. To this end, the averaged Hurst
parameter value, H = 0.862, is used.

6. FRACTIONAL GAUSSIAN NOISE SAMPLES

The fGn process used as arrival traffic is represented by the
following relationship [12]

A =mt +VamY;

Where “m” is the mean rate and “a” is the peakedness fac-
tor defined as the ratio between the variance and the mean

(18)



Table 1. Hurst parameter estimation results.

| Statistical Method || H |
R/S Statistic 0.8992
Variance-time analysis 0.8416
Index of dispersion (for counts) analysis 0.8385
Periodogram-based analysis 0.8768
MLE of Whittle 0.861 + 0.051
Wavelet-based estimator 0.876 + 0.044
| Averaged H value : I 0,8621 |

value it is also known as the variance coefficient. This factor
can be seen as the IDC of the inter-arrival process®. There-
fore, A; has its amount of traffic, m, that is offered to the
network (buffer) in the interval (0,¢] while H and a charac-
terize the type of traffic mix. The incremental process given
by V; = Xi41 — X; in eq.(18) is a discrete time stationary pro-
cess with X141 and X; being samples of the fBm. As eq.(18)
shows, A; consists of one deterministic part, namely mt, that
represents the average incoming traffic and one stochastic
part, /amY:, that accounts for the random fluctuations in
the traffic, recall that Y; is bearing by H. This model works
quite well if the number of the sources is huge and with not too
high individual peak rates. Unfortunately it does not work
equally well when there are only a few active sources or when
there is high diversity among the speeds from the different
sources. Fig.11(a) shows a sample trace of a non-stationary
continuous time fBm process generated via the Random Mid-
point Displacement (RMD) algorithm [10, 11], with H = 0.862
a mean value m = 0 and a variance between samples given by
o2t Fig.11(b) shows the derived fGn process’. The fGn
asymptotical auto-correlation function [3, 7, 8, 24], as k — oo,
is given by

r(k) = H(2H — 1)k>1=2 (19)

fractional Brownian movement fractional Gaussian noise
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Figure 11. (a) fractional Brownian motion (fBm) sam-
ple trace (b) fractional Gaussian noise (fGn) sample trace.

Regarding the moving average and harmonic integral repre-
sentation of the fGn rather than a direct Fourier transform
for r(k) instead [7, 27], one obtains the spectral density func-
tion (refer to eq.(9)) as an 1/f® noise. Fig.12(a) compares

6For LRD processes a 3> 1 is mandatory.

"In order to use this model to simulate LAN/WAN traffic intensity,
one has to truncate samples of the original f{Gn to eliminate negative
values.

the auto-correlation functions from both fGn and aggregated
IP network traffic processes and Fig.12(b) compares the spec-
tral behavior, near the origin, of the same processes. From
the above results it is possible to conclude that the time and
frequencies characteristics, of the f{Gn are very closer to those
actual aggregated IP network traffic traces, even though ag-
gregate IP traffic seems to be less Gaussian than expected
[31]. However, for practical purposes this model can be used
to describe the highly dynamic, over many time scales, of the
aggregated IP datagrams traffic collected.
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Figure 12. Actual IP datagrams traffic vs. fGn: (a)
auto-correlation functions (b) Spectral behavior.

7. PERFORMANCE ANALYSIS

The scenario to obtain some measurements as cell loss rate
(CLR), effective bandwidth and queuing performance via sim-
ulation is shown in Fig.13. This figure shows that the router
and the ATM switch were represented by two queues. The
ATM switch using the Enhanced Proportional Rate Control
Algorithm (EPRCA) controls the Source End System (SES)
bit rate as intended for Available Bit Rate (ABR) service [19].

ATM Public Network

Linkoc3 \Destine

ATM buffer
(variable)

ER feedback

Figure 13. The simulation scenario.

7.1 Cell Loss Rate

Every IP packet was segmented and enveloping in ATM cells
utilizing the AAL5 protocol [22]. Fig.14(a) and Fig.14(b)
show the CLR as a function of the ATM switch output buffer
size (in cell units) without and with the presence of EPRCA
respectively, more about this congestion control algorithm can
be obtained in [19] and references therein.

Comparing the results obtained in the presence of Markovian
and self-similar traffic, it is clear that in both cases the use of
EPRCA algorithm reduce the CLR, but for self-similar traffic
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Figure 14. Cell loss rate: (a) without explicit rate (ER)
control (b) with ER control.

the CLR is still high even with large buffer size. Therefore, a
solution should not be to get high buffer sizes into an ATM
switch, but new congestion control avoidance algorithms in-
stead, that takes into account the long-range dependencies of
source/destination end systems.

7.2 Effective Bandwidth

The effective bandwidth of a given source is the desired band-
width to meet the QoS requirements of the source. We will see
that effective bandwidth and probability buffer overflow are
intimately related concepts. As stated in [12], “(Fig.15(a))
shows the residual distribution function of the Weibull distri-
bution with different values of H, m and a, the sharp knee be-
tween the cell and burst scale components of the queue length
distribution, is replaced by continuous flattening, correspond-
ing to the intuitive idea of burstiness in all time scales. In
particular, the curves don’t have non-zero asymptotic slopes
when Hurst parameter is H > 0.5. Note that for H = 0.5 this
probability buffer overflow behavior reduces to an exponential
distribution function”. Fig.15(b) shows the simulation result
in agree with Norros formula.

The probability buffer overflow under fractal input processes,
has a very complex analytical evaluation and only asymptotic
of a lower bound of the complementary probability have been
provided by many researches to date [12, 13, 28]. The so-
called lower bound for approximate queue length distribution
[12, 37] is given by

(C —m)*H 272H]
2k(H)2am

Where C' is the channel capacity, m is the mean rate of the
aggregated IP data traffic, k(H) = H”(1 — H)'~H a is the
peakedness factor and z is the buffer size. CAC algorithms
will be enormous beneficiate of all breakthroughs done over
this subject. Eq.(20) gives a very important feature for mod-
ern high speed networks based on some QoS and LRD pro-
cesses. In this case, if one solves eq.(20) for C' given the QoS
parameter as a constraining such as P(X > z) = £, then

P(X > ) = exp [— (20)

1

Cogp =m+ [ = 26(Ham ()2 20-0 7 (1)

Where C.p is the expected or effective bandwidth that is
needed in order to keep the probability buffer overflow small.
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Figure 15. Probability buffer overflow: (a) theoretical
Norro’s formula (b) simulation.

Current CAC algorithms are based on eq.(21) (with some vari-
ants) as a first step toward more complex algorithms, taking
into account the fractal behavior.

Eq.(21) can be interpreted as follows: the bandwidth, Cer,
required to support a stream of traffic should be equal (at
least) to its mean bit rate (this is the deterministic part of
the equation) plus sufficient spare capacity to absorb traf-
fic burst above the mean (the stochastic part). Note that
under asymptotically second-order (Gaussian) self-similar ar-
rival process assumptions the probability buffer overflow de-
cays algebracally as z=2(!=H) _ But if a non-Gaussian arrival
process is considerate, which corrsponds to a # 2, then the
algebraic decay term takes the form z—*(1—#) Jeading to more
realistic and complex frameworks.

Fig.16 depicts the practical use of eq.(21) as a link dimen-
sioning formula; it is interesting to considerer its sensitivity
on a and H, this figure shows a family curves with various
values of a and H for m = 2 Mbps, ¢ = 102 for two buffer
sizes. The upper three curves (right side of the figure) corre-
spond to the buffer size 100 Kbytes, the lower three curves to
the buffer size 1 Mbyte.

Effective Bandwidth [Mbis]

]

0 00l 002 003 004 005 006 007 008
a (Variance Coeficient) [kbls]

Figure 16. Required link capacity as a function of the
peakedness factor a.

As Fig.16 shows, for small a values, the capacity required for
H > 0.5 will be larger than for H = 0.5; eventually, as a in-
creases, because of the slower growth in the required capacity,
traffic with H > 0.5 may require less capacity (multiplezing
gain). This is referred to as a cross-over [39]. Thus, when the
buffer is small, the link requirement depends much less on H
than when the buffer is larger [12]. It is very difficult for a
SRD traffic to fill up a large buffer, as explained below.



7.3 Queuing Performance

Fig.17 shows another system performance characteristic sim-
ulation. First running was intended for SRD processes, in
this case classical queuing theory results have emerged as ex-
pected, i.e., when a Markovian-type traffic was injected to the
buffer, either the M /M /1 or M/D/1 queuing models were ob-
tained. When LRD processes were used things changed in a
sharp and clear way as expected, with such processes as queu-
ing input, even with low system utilization the ATM switch
experiments a rapid increase in its buffer size [29], this result
suggests that is very probably for self-similar traffic to fill up
a buffer8.

MiDIL
(ML) H=05
H=086

0 01 02 03 04 05 06 07 08 09 1
Load Factor (System Utiization)

Figure 17. Simple ATM switch queue performance anal-
ysis with no feedback control.

The fact that larger buffers are needed for self-similar heavy-
traffic conditions explains the observations that, in real net-
work environments, ATM switches do not often meet their
specifications, whose derivation is based on non self-similar
or short-range dependent models. For this end, the ATM Fo-
rum [22] needs to review their congestion avoidance control
algorithms and call admission control policies at the user net-
work interface (UNI) point (Fig.13), where the user parameter
control (UPC) plays a main role and probably at the network-
to-network interface (NNI). This is crucial for the complete
success of the ATM or whatever real Broadband-Integrated
Services Digital Network (B-ISDN) technology with a guar-
anteed QoS.

8. SUMMARY

The strong timely correlation in the aggregated IP data traf-
fic trace analyzed was so evident. Therefore, through several
statistical methods either in frequency or time domain, an
unbiased and well-defined Hurst parameter, H &~ 0.86, was
obtained. Despite some arguments claiming that the MLE of
Whittle is very biased and the Wavelet-based method is not,
results have shown that both values are in direct agree each
other (see Table 1). Other methods gave compatible results
too. Therefore, this permitted us to generate synthetically
traces obeying as close as possible the highly dynamic behav-
ior of our real data traffic.

As has been mentioned, this paper is a sort of survey show-
ing classical results that have been obtained in the past years

8This is critical for VBR video coded as its bit rate is expected not
to be network controlled.

regarding the impact of self-similar traffic in ATM networks,
via simulation. Even though, the aggregated IP datagrams
traffic is not as Gaussian as expected, it was found that f{Gn
can emulate very well such behavior. Therefore, the use of
this mathematical model, as a discrete inter arrival process
like packets or cells into a buffer, can be for practical issues, a
very good start point to work with. Regarding that IP data-
grams will be one of the most important traffic flows in ATM
networks, is likely that ATM cells will show the same fractal
characteristic, it means that edge ATM switches could receive
data traffic with a Hurst parameter between 0.5 < H < 1 and
to forward such data traffic with H ~ 0.5 through the network
will be a great challenge, dimensioning even more [25, 30, 38].
Results have shown that intrinsic self-similar characteristic of
data traffic could give a low QoS for end users. The meaning
of self-similarity for dimensioning is still investigated.

So far, fortunately, much work has been done and many re-
searchers all over the world still (hardly) working over those
fascinating topics, namely, fractals and high-speed networks
toward a comprehensive successful union.
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