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ABSTRACT

Performance bounds for convolutional codes over memo-
ryless channels are commonly measured using the distance
weight enumerator � ��� ��, also referred to as the generat-
ing series or the transfer function, of the code. In particular,
bounds to the bit error probability are computed using the
first few terms of the series expansion of �� � ��� ���������.
In this paper we present an efficient algebraic method to ob-
tain this truncated series. We also propose a iterative proce-
dure to compute the truncated � ��� �� that discards, at each
step, all paths with Hamming weight higher than a given
order.

1. INTRODUCTION

A binary convolutional encoder is a linear finite state ma-
chine (FSM) that generates �� bits for every �� bits pre-
sented at its input. The rate of the encoder is 	� � �����,
and 
 is denoted the constraint length of the encoder. We
will focus here on time invariant, non-catastrophic convo-
lutional codes whose memory cells are arranged as a serial
shift register. Figure 1 shows an example of a shift regis-
ter convolutional encoder of rate 	� � ���, and constraint
length 
 � �. The state of the convolutional encoder is
defined as the contents of the right most �
 � �� �� bits of
the shift register.

The encoder state diagram is a labeled directed graph
with �������� vertices, and �� �� edges branches, each la-
beled with ��-bit input and ��-bit output strings. An ex-
tended state diagram that shows the evolution of state tran-
sitions at each time step is called a trellis diagram. Each
possible transmitted codeword in a convolutional code cor-
responds to a unique path (sequence of states in the trellis
diagram). The Hamming weight (number of 1’s) of a path
means the Hamming weight of the codeword associated to
the path.

For the purpose of performance calculation, it is assumed,
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Figure 1: Encoder for a rate 	� � ���, constraint length

 � �, convolutional code.

without loss of generality, that the all-zero codeword (all
zero path in the trellis diagram) is transmitted. Let � be the
set of all paths that diverge from the all-zero path (leave the
state 0), at a fixed time instant �, say � � �, and remerge
into the all-zero path exactly once at some time later. The
performance analysis of convolutional codes is based on the
first-event error probability, denoted here as ��� , which is
defined as the probability that any path in the set � accu-
mulates higher metric than the all-zero path, given correct
decoding up to � � �. A second important performance
measure is the instantaneous bit error probability, denoted
as ��, which is defined as the average number of erroneous
information bits emerging from the decoder per information
bit decoded. Using union bounds arguments, it is shown
in [1, Section 4.4] that ��� and �� for memoryless channels



are bounded above by:
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In the expressions above, �	
�� is the minimum free dis-
tance of the code, �� is the number of paths in � of Ham-
ming weight �, 
� is the total number of nonzero informa-
tion bits in all paths of Hamming weight � in �. As for ��,
it is the pairwise probability that a path in � (a wrong path)
of Hamming weight � is chosen instead of the correct path.
The parameters �� and 
� in Equation (1) depend only on
the code parameters and are commonly calculated from the
coder’s transfer function � ��� �� [1]. The transfer function
enumerates the set � with respect to the Hamming weight
of all input and output sequences of a convolutional code.

Typical methods for determining the transfer function
include Mason’s rule [2, 3], graph-reduction techniques [4],
or solving state equations [1, 5]. The closed form expres-
sion for � ��� �� rapidly becomes intractable as the number
of states increases. For example, � ��� �� for 
 � 	 is
the ratio of two bivariate polynomials with 776 terms. In
practice, however, the probabilities ��� and �� are calcu-
lated with acceptable accuracy using some initial terms of
the series expansion of the transfer function. In this context,
the complete � ��� �� contains much more information than
needed for performance calculation. In this paper, we pro-
pose a iterative procedure to compute the truncated � ��� ��
that discards, at each step, all paths with Hamming weight
higher than a given order.

We adopt throughout this paper the following notation.
The superscripts �� and ��� represent the ��� power and
the inverse of the matrix �, respectively. Moreover, 
�� 
��
denotes the ��� ���� entry of �. The matrix � stands for the
identity matrix. If � and � are commutative indeterminates,

�� ���� ��� �� denotes the coefficient of �� �� in the formal
power series � ��� ��. 	

��� be the ring of all formal power
series in commuting indeterminate � with coefficients taken
from the field of real numbers 	, and 	
�� is the set of all
polynomials in �.

2. THE PATH WEIGHT ENUMERATORS

Let �� and �� be weight functions such that ����� and
����� are the number of 1’s in the input and output (code-
word) sequence, respectively, corresponding to an incorrect
state sequence � � �. � ��� �� is the generating series for
the set � with respect to the weight functions �� and ��,
that is:

� ��� �� �
�
�� �

����� � ����� � � 	
��

���� (2)

� ��� �� is a formal power series in � with a coefficient ring
	
��. It is clear that [1]:
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In the following, we will derive an expression for � ��� ��
using the combinatorial method which enumerates sequences
with restriction placed on adjacent symbols [6, Chapter 4],[7,
Section 4.7]. The first step is to generate the adjacent ma-
trix � of the encoder from the trellis diagram. For an en-
coder with ���� states, � is a ����� ���� matrix whose
��� ���� entry is of the form 
��
�� � ����
��� ����
���,
where ����� �� and ����� �� are the Hamming weights
of the input and output strings on the branch that connects
the states � and �, respectively, for � � �� � � ���� � �
(rows and columns of � are indexed by states). If states �
and � are not joined on the trellis diagram, then 
�� 
�� is set
to zero. For example, the adjacent matrix for the convolu-
tional code of Figure 1 is:

� �

�
�����������

� ��� � � � � � �
� � �� � � � � �
� � � � � �� � �
� � � � � � � ��
�� � � � � � � �
� � � ��� � � � �
� � � � � �� � �
� � � � � � � ��

�
����������	

� (4)

It is interesting to observe that for a shift-register convolu-
tional code with constraint length 
, all state sequences in
� has the following structure: The first symbol is 0, the sec-
ond is 1, the third is either 2 or 3, and so on, the second last
symbol is ����, and the last symbol is 0. Define a non-zero
path as a path which do not enter or leave the zero state.
Let ����� �� be the generating series that enumerates non-
zero paths from the initial state 1 to the terminal state ����

with respect to the weight functions �� and ��. An exam-
ple of such a path for a convolutional code with 
 � � is
� � ��������
�. Thus

� ��� �� � 
����� ����� �� 
��������� (5)

An expression for ����� �� is obtained directly from the ad-
jacent matrix �. Let ���� be an adjacent matrix identical
to its counterpart �, except that the first row and the first
column are set to zero, i.e., transitions from and into state 0
are not considered. Then, the generating series ����� �� is
expressed as:

����� �� �



������ ������ ������ � 	 	 	
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�

(6)



The ��� �������-entry of the ��� power of ���� is a bivari-
ate polynomial in � and � whose exponents are Hamming
weights ����� and �����, respectively, of all non-zero
paths originating in state 1 and terminating in state ����,
and the coefficients are the multiplicity of the weights. From
Equations (6) and (5) we get [8]:

� ��� �� � 
�����
�
����������



������


��������� (7)

Notice that it is necessary to invert a ���� � ���� sym-
bolic matrix in order to find a closed form expression for
� ��� ��. In particular, using the symbolic manipulation pro-
gram MAPLE, we easily found � ��� �� given by Equation
(7) for the adjacent matrix � of Equation (4):

� ��� �� �
���� � � � �����

��� � ��� � �
� 	
��

���� (8)

The series expansion of Equation (8) yields the desired quan-
tities �� and 
�, since:

� ��� �� � ���� � ��� �����	 � 	 	 	

� ��� �� � �� � ��	 � ��
 � ���� � 	 	 	

�
�� �����

��

�
���

� ��� � 	�	 � ���
 � ���� � 	 	 	

(9)
Equation (8) shows � ��� �� in a fractional form, which is
converted into a truncated polynomial form in Equation (9)
for the purpose of performance calculation. The compu-
tation of � ��� �� is practical for relatively short constraint
length. A method for finding the the series expansion of
� ��� �� and �� � ��� ��������� for any finite number of
terms without first computing the complete � ��� �� is con-
sidered in the next section. Before we proceed we need the
following definitions of equivalence of FSM’s:

Definition 1: Two FSM’s are said to be equivalent if
and only if their transfer functions are identical.

Definition 2: Two FSM’s are said to be equivalent of
order �� if and only if the series expansion of � ��� �� and
�� � ��� ��������� of order �� and lower are the same for
the two FSM’s, i.e., both FSM’s have the same polynomials���

�������
�� �

� and
���

�������

� �

�.

3. STATE REDUCTION ALGORITHM

An iterative procedure for calculating ����� ��, called state
reduction algorithm is developed in this section. The main
idea is to create a sequence of adjacent matrices represent-
ing equivalent FSM’s of order �� with one state less.

It should be observed that each non-zero path is formed
by concatenating paths that start from state 1 and reach state
���� for the first time some time later. Call the set of all
such paths ��. For example, the path � � ��������
� is
the concatenation of 3 paths, ����� ���� ��
��, belonging

to ��. If ����� �� is the generating series for the set ��, we
have:

����� �� � ����� �� � ����� �� 
�������� ����� ���
����� �� �
�������� ����� �� �

� � 	 	 	
� ����� ����� 
�������� ����� ���

���
(10)

To calculate ����� �� we may form a sequence of equivalent
FSM’s where at each step we eliminate transitions from and
into the ��� state. The ��������� adjacent matrix for this
equivalent FSM, denoted by ����, is calculated from the
adjacent matrix of the previous step ���� (obtained from
the elimination of the ��� state) as shown in the following
lemma.

Lemma 1 Let
 and � be sets of indexes �, � � �� 	 	 	 � ����,
� �� �, such that 
�������
 and 
�����
�� are different from
zero, respectively. The ��� ���� entries of the matrix ����
are:

��������� � ������������ ����������
����������� � if � � �� � � ��

�� if � 	 �� � 	 �� � � � � 
����
�� if � 	 �� � 	 �� � � � � 
����

��������� � otherwise�
(11)

where on the first row, 
�����
�� is due to parallel transi-
tions, and the term ��� 
�����
�
�

�� stands for the circula-
tion loop on the ��� state. The state reduction algorithm is
summarized below:


 Set � � �. Find ����.


 for � � ���� � �� 	 	 	 � ���� � �� ���� � �� 	 	 	 � �
form the sequence of equivalent FSM’s ���� accord-
ing to Lemma 1.


 ����� �� � 
����������� .

In the following we demonstrate, as an example, the state
reduction algorithm for the encoder of Figure 1 whose ad-
jacent matrix is given by Equation (4).
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��	� �
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�����������

� � � � � � � �
� � �� � � � � �
� � � � � �� � �
� � � � � � �
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����������	
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� �
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�����������

� � � � � � � �
� � �� � � � � �
� � � � � �� � �

� � � � ��
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���

���� � �
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� � � � � � � �
� � � � � � � �
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�
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��������� � � �

� � � � �����

��������� � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
�����������	

�

where � � ���������������������������,
and � � ��� � ��������� �� � �����.
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� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
����������	

�

where � � �����������������������������

Then 
�������� � ����� �� � ��������������� ����
���� � �����. Substituting ����� �� into Equation (10)
and the result into Equation (5), we get � ��� �� given by
Equation (8), which is the same result as that obtained by
other methods. Practical difficulties may arise for codes

with moderate constraint length because the storage, but the
algorithm is useful for finding a truncated transfer function
using a symbolic manipulation program. We propose next
a modification of the algorithm which is significant in prac-
tice. We will create a sequence of equivalent FSM’s of order
�� (according to Definition 2) by performing the following
operation: After calculating 
�����
�� , � � 
� � � �, ac-
cording Lemma 1, we compute symbolically its series ex-
pansion with respect to the variable �, up to order ��. As
a result, each entry of ���� is a bivariate polynomial of the
form:

���

��

�
��� �

 � 	
��

����

where �
��� is a polynomial in �. In doing so, all paths
with Hamming weight higher than �� are discarded. The
sequence of equivalent FSM’s of order �� � � is shown
below:


 � � �, � � 	:

��	� �

�
�����������

� � � � � � � �
� � �� � � � � �
� � � � � �� � �
� � � � � � � �
� � � � � � � �
� � � ��� � � � �
� � � � � �� � �
� � � � � � � �

�
����������	

�

where � � � � ��� � ���� � ����.


 � � 	, � � 
:
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� �

�
�����������

� � � � � � � �
� � �� � � � � �
� � � � � �� � �
� � � � � � � �
� � � � � � � �
� � � ��� � � � �
� � � � � � � �
� � � � � � � �

�
����������	

�

where � � �� � ��� � ���� and � � ��� � ���� �
����


 � � 
, � � �

���� �

�
�����������

� � � � � � � �
� � �� � � � � �
� � �� ���� � � � �
� � � ���� � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
����������	

�

� � ��� � ���� � ����, and � � �� � ��� � ����.
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�
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� � � � � � � �
� � � � � � � �
� � �� � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
����������	

�

where � � �� � ����� � ���� � ����, and � �
��� � ���� � ����.
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�
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� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
����������	

�

where � � ��� � �� � ������ � ��� ������.

The truncated transfer function����� �� is ��������������
�� � ������. From this polynomial we can easily calcu-
late the truncated series ����� �� and the truncated � ��� ��
which is equivalent of order �� to the complete � ��� ��.
The main feature of the modified algorithm is that all opera-
tions are performed in the coefficient ring 	
��

���������.
Notice that no matter the number of states, the entries of
���� are bivariate polynomials whose powers of � are of
order at most ��.

Example 3.1 The truncated generating series up to order
15 for the 1/2-rate convolutional code with generator poly-
nomial (in octal) 4734,6624 is:

� ��� �� � ��� � ������� � ��� ��� � ��
�����
���� � ��� � ��� � �
�����
���� � ��
 � ���	 � 
�� � 	������
�

(12)

The coefficients �
����������� for 1/2-rate convolutional codes
are shown in table 1.

4. COMMENTS

Signal flow graphs [9] is the well known technique em-
ployed to construct equivalent FSM’s with one state less and
is largely used in conjunction with Mason’s rules to find
the transfer function of convolutional codes. There is an

Table 1: Weight coefficients of 1/2-rate convolutional codes.


 � 7 8 9 10

Generators 133,171 247,371 753,561 4734,6624


 - - - -

� - - - -

�� 36 2 - -

�� 0 22 - -

�� 211 60 33 14

�� 0 148 0 26

�� 1404 340 218 74

�
 0 1008 0 256

�� 11633 2642 2179 496

�	 0 6748 0 1378

�
 77433 18312 15035 4122

�� 0 48478 0 10832

�� 502690 126364 105166 27988

�� 0 320062 0 72209

�� 3322763 821350 692330 186920

analogy between the signal flow graph rules and combina-
torial principles that enumerates sequences with restrictions
on adjacent symbols. This work presents an algorithm to
compute transfer functions with two new features. First,
we defined combinatorial identities to work with equivalent
FSM’s at the level of the adjacent matrix which is conve-
nient for symbolic computation. Second, operations are per-
formed in the coefficient ring, resulting in a truncated trans-
fer function with considerable less storage requirements.
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