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ABSTRACT

We present an analytical method for evaluating the perfor-
mance of a communication system that employs a convo-
lutional code, a block interleaving with finite interleaving
depth, a binary channel that exhibits statistical dependence
in the occurrence of errors, and a decoder that implements
the Viterbi algorithm with Hamming metric. The main idea
is to apply combinatorial methods to derive a formula for
bounds to first-event and bit error probabilities in terms of
coefficients of a generating series. The method is used to
investigate the tradeoff between coding parameters and in-
terleaving depth to achieve a required performance.

1. INTRODUCTION

The error process encountered in many digital communica-
tion systems introduces distortion in the transmission pro-
cess in such a way that errors occur in bursts. The channel
model considered in this work is an additive binary burst
channel modeled according to a finite state channel (FSC) [1]
model. The model is described statistically by a probabilis-
tic function of a Markov chain whose parameters are con-
veniently chosen to capture the bursty nature of errors sym-
bols produced by several real channels. Examples of FSC
models proposed in the literature include the Gilbert-Elliott
channel [2] and the Fritchman channel [3].

A detailed calculation of performance bounds for maxi-
mum likelihood decoding of convolutional codes over mem-
oryless channels is found in reference [4]. The bounds de-
veloped in [4] are commonly measured using the distance
weight enumerator, also referred to as the transfer function,
of the code. The information derived by the transfer func-
tion (Hamming weights of the input and output sequences of
the convolutional code) cannot be used to measure the per-
formance of convolutional codes over burst channels, be-
cause, in this case, the probability of an error event de-
pends not only on the number of errors in the binary stream

generated by the channel, but also on the error positions.
In this paper, we propose a generalization for the conven-
tional transfer function, and apply these results to obtain
performance bounds for a specific convolutional code over
interleaved FSC models (the cascade of block interleaver,
FSC model, and block deinterleaver) with finite interleaved
depth. Previous theoretical analyses of error correcting codes
over FSC models have been mainly concentrated on block
codes [6, 7, 8, 9, 10]. Results for convolutional codes over
FSC models are obtained from computer simulation in [6,
11]. The technique presented here is an interesting alterna-
tive approach with respect to computer simulations.

We use a combinatorial approach to find the generat-
ing series that enumerates all error patters that produce er-
ror events in the decoding process. By defining appropri-
ate indeterminates we are able to extract useful information
from the resulting generating series for the evaluation of
coded system performance. A linear mapping incorporates
the model parameters into the generating series. The ap-
proach is not channel specific and is valid for general FSC
models irrespective of the number of states and structure of
the Markov chain. One motivation for this research is to
develop analytical methods for analyzing interleaved com-
munication systems where delay constraints limit the maxi-
mum value of the interleaving depth.

The remainder of this paper is organized as follows.
Section 2 describes the communication system. A brief re-
view of FSC models is contained in this section. In Section
3, we introduce the method which will enable the enumera-
tion of error events. The rest of this section is dedicated to
obtaining performance bounds for convolutional codes over
FSC models from the generating series. Numerical results
are presented for the special case of Gilbert-Elliott channels
with known model parameters. Conclusions are summa-
rized in Section 4.

We adopt throughout this paper the following notation.
Given a matrix �, the superscripts �� and ��� represent



respectively the transpose, and the inverse of a matrix. The
matrices � and � stand for the identity matrix and a col-
umn vector of ones, whose dimensionality is clear from
the context. If � and � are commutative indeterminates,
��� ���� ��� �� denotes the coefficient of �� �� in the for-
mal power series � ��� ��. Let ������ be the ring of all for-
mal power series in commuting indeterminate � with coef-
ficients taken from the field of real numbers�, and let ����
be the set of all polynomials in �. � � ��� �� � is the
ring of all power series in the non-commuting indetermi-
nates ��� ��.

2. COMMUNICATION SYSTEM DESCRIPTION

Consider a convolutional encoder of rate �� � ���� and
constraint length 	, with memory cells arranged as a se-
rial shift register. The encoder state diagram is a labeled di-
rected graph with ������ vertices (states), and �� branches,
each labeled with �-bit input and ��-bit output strings. Fig-
ure 1 shows a representation of the state diagram for an
eight-state encoder of rate �� � ���, 	 � �, and gen-
erating polynomial (in octal) 15, 17.
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Figure 1: State diagram for a rate �� � ���, constraint
length	 � �, convolutional code.

The information sequence is encoded into a single code-
word of unbounded length and transmitted across the inter-
leaved FSC model. A block interleaver consists of an array

of �� 
� columns and �� (interleaving depth) rows. The
output sequence of the interleaver is corrupted by an addi-
tive error sequence �������� statistically distributed accord-
ing to an FSC model. The error bit �� is characterized by
a probabilistic function of an  state Markov chain with
transition probability matrix �. Define two  �  matri-
ces, ��	� and ����, where the ��� ���� entry of the matrix
�����, �� � �	� ��, is the probability that the output sym-
bol is �� when the chain makes a transition from state � to
�. We are assuming that the distribution of the initial state is
the stationary distribution � � ���� ��� � � � � �����

� . The
probability of an error sequence of length �, �� � �� � � � ��,
is expressed in a matrix form as:

� ���� � �
�

�
��

���

P����

�
��

For example, the Gilbert-Elliott channel is a two-state Mar-
kov chain composed of a good state, state 0, where errors
occur with small probability, and a bad state, state 1, where
errors occur with higher probability. The transition proba-
bilities of the Markov chain are� and �, as shown in Fig. 2.
When the chain is in the good state the error bit �� is zero
(correct) with probability � � �, or one (error) with proba-
bility �. Otherwise, when it is in the bad state, the error bit
is zero with probability ���, or one with probability �. The
parameter � � ����� is defined in [12] as the memory of
the Gilbert-Elliott channel. The matrices��	�,����, where
��	�
���� � �, and� for the Gilbert-Elliott channel are
given by:

P(0) �

�
����� ��� �� � ��� ��
� ��� �� ��� �� ��� ��

�
� (1)

P(1) �

�
����� � � �
� � ��� �� �

�
� (2)
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Figure 2: Gilbert-Elliott model for burst channels.



The deinterleaver restores the original order of the trans-
mitted symbols. Notice that two consecutive received sym-
bols in each row of the deinterleaver are corrupted by two
error symbols separated exactly by ��. The Viterbi decoding
algorithm generates an estimate of the transmitted symbols
using the Hamming metric. The parameter 
� is the deci-
sion depth of the Viterbi algorithm.

3. PERFORMANCE ANALYSIS

We start this section introducing the main concepts regard-
ing the performance calculation of convolutional codes on
memoryless channels. Later, we generalize these results to
treat the case of burst channels.

Let � be the set of all incorrect paths, where the all-
zero codeword was transmitted. Each path in � constitute
an error event. The first-event error probability, ��� , and
the bit error probability, �, for memoryless channels are
bounded above by:

��� 	

��
�������

�� ���

� 	

��
�������

�� ���

(4)

where ����� is the minimum free distance of the code, ��
is the number of paths in � of Hamming weight �, �� is
the total number of nonzero information bits in all paths of
Hamming weight � in �, and �� is the pairwise probability
that a path in � (a wrong path) of Hamming weight � is cho-
sen instead of the correct path. This probability depends on
the metric used by the Viterbi algorithm, and on the channel
parameters. For example, for a BSC channel with crossover
probability �, and for a Viterbi decoder using Hamming dis-
tance as metric, a path with weight � is chosen over the all-
zero path if ��
���� or more transmission errors are made
in these particular � positions. Therefore
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It is assumed in the second row of Equation (5) that �� �
��� if exactly ��� errors occur. The parameters �� and ��
are commonly calculated using the transfer function� ��� ��
of the code. Let  � and  � be weight functions such that
 ���� and  ���� is the number of 1’s in the input and out-
put (codeword) sequence, respectively, corresponding to an

incorrect state sequence � . � ��� �� is the generating series
for the set � with respect to the weight function  � and  �,
that is:

� ��� �� �
�
���

����� � ����� � � ���������� (6)

For example, the generating series corresponding to a par-
ticular the state sequence � � 	���	 is ���. We now turn
to the computation of ��� and � for convolutional codes
over FSC models. In this case, the parameters �� and ��
have no relevance to the performance calculation, since er-
ror sequences of Hamming weight � have different probabil-
ity. First, we treat the non-interleaved case. To find a union
bound expression for ��� and �, a complete enumeration
of all codewords in a non-commuting ring is needed, since
the probability of each sequence produced by the channel
depends on the non-commutative product of matrices ��	�
and ����. The new generating series, which is denoted
by � ���� ��� �� ��, records all the information about the se-
quence of 0’s and 1’s that constitute each codeword, and is
defined next.

Let the non-commuting indeterminates �� and �� mark
a bit equal to zero or one in a codeword, and let  �� 

��, which is in � ! ��� �� " (the set of polynomials in
non-commuting indeterminates �� and ��), mark the output
string corresponding to the state transition from � to �. For
example, from the state diagram of Figure 1,  �	 
 �� �
�� ��,  �� 
 �� � �� ��. The generating series we are
interested in finding is defined as:

� ���� ��� �� �� �
�
���

��
���

���� � �����

�
�
�����

�
�����

�

(7)
For example, the generating series corresponding to a state

sequence � � 	���	 is ���������������� ���. The infor-
mation needed to calculate � ���� ��� �� �� is encoded into
an adjacent matrix, denoted by �, whose ��� ���� entry is
defined as follows:

���� �  ��
 ���������� ���������

where  ���
 �� and  ���
 �� are the Hamming weights
of the input and output strings on the branch that connects
the states � and �, respectively, for 	 	 �� � 	 ���� � �
(rows and columns of � are indexed by states). If states �
and � are not joined on the state diagram, then � ��� is set to
zero. For example, the adjacent matrix for the state diagram



of Figure 1 becomes:
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where � � ����, � � ����, # � ����, � � ����. It is
interesting to notice that any state sequence in � has the fol-
lowing structure: The first symbol is 0, the second is 1, and
so on, until it reaches the state ����. The next state may be
either 0 (the final state), or 1, when the process restarts all
over again. Let �� be the set of all state sequences that start
in state 1 and reach state ���� for the first time some time
later. The main step to find an expression to � ���� ��� �� ��
is to enumerate the set ��, yielding the following generating
series ������ ��� �� ��:

������ ��� �� �� �
�
����

��
���

���� � �����

�
�
�����

�
�����

�

(8)
The desired generating series � ���� ��� �� �� is expressed

in terms of ������ ��� �� �� as shown below:

� ���� ��� �� �� �
���������� ��� �� ����� ������� ������ ��� �� ���

����������
(9)

We have used the graph reduction technique proposed in [14]
to calculate ������ ��� �� ��. The next example illustrates
the calculation of ������ ��� �� �� for the encoder described
by the state diagram of Figure 1.

Example 1 Figure 3 shows a reduced state diagram. The
branch labels �, #, �, � and $ are defined below:
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Figure 3: Reduced state diagram.
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The generating series for all paths that start from state 1
and reach state 4 for the first time is shown below:

������ ��� �� �� � ������� $�
������� 
 ���� #��� �
���


� ��� #��� ���
�� 
 ���� $��� ������
(10)

where  � �������#�������$������ and � � �������
$������ � #������. It is worth noting that all multiplica-
tions in ������ ��� �� �� are non-commutative. The desired
generating series � ���� ��� �� �� is obtained from (9):

� ���� ��� �� �� �
���������� ��� �� ����� ���� ������ ��� �� ���

�������
(11)

Our objective for the rest of this paper is to express � and
��� in terms of the generating series � ���� ��� �� �� defined
in (9). This goal is achieved by enumerating all error pat-
terns that produce an error event, for each codeword in the
set �. This is the same union bound argument that led to
Equation (4). The Viterbi decoder chooses the incorrect
path instead of the all zero path if the channel produces more
ones (errors) than zeros (correct) in those positions marked
by ��. Let the indeterminates �� and �� mark an error bit
(produced by the channel) equal to 0 or 1, respectively. Let
�� be the mapping defined as:

�� � �� ��� �� ��
 �� �� ��� �� � �
�� �
 �� 
 ���
�� �
 �� 
  ���

(12)

extended as a homomorphism to the whole of the ring, where
 marks the number of errors produced by the channel in
the codeword positions marked by ��. Define

%���� ���  � �� �� � ���� ���� ��� �� ���� (13)

Notice that acting on � ���� ��� �� �� with the mapping ��

enumerates all possible error patters that corrupts each code-
word in �.

After having enumerated the sets of all error patterns of
interest, the probability of these sets follows directly from
(13) and (2). Consider a general FSC model defined by the
matrices ��	�, ���� and �. Therefore, by defining a map-
ping � that replaces �� by the corresponding matrix ����
and replaces 1 by the identity matrix � [13], the generating
series for the probability of error patterns is expressed as:

� � � �� �� ��
� ��%���� ���  � �� �� ��� (14)

� � � �� �� is a ratio of two polynomials in  , �, and �, and
its series expansion is easily performed using a symbolic



manipulation program. The probability of all possible error
sequences that produces an error event is enumerated by:

����� �
�
� even

��� ���� � � � �� ���

����� �
�

�������

����
�

�����������

� � � � � � �� ���
(15)

Recall that � records the number of 1’s in a codeword and 
records the number of errors in the positions marked by � �.
Therefore, we can conclude that ����� enumerates the prob-
ability of all error patterns whose number of 1’s is greater
than the number of zeros in the positions marked by � � for
each codeword in �. On the other hand, ����� enumerates
the probability of all error patterns with equal number of 0’s
and 1’s in the positions marked by ��. Finally, we are able
to give new expressions to upper bounds on ��� and � for
convolutional codes over FSC models. The expressions are
given by:

��� 	
�

�
����� 
 ������ (16)
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Example 2 This numerical example illustrates the succes-
sive action on � ���� ��� �� �� with the mappings �� and �.
To simplify the calculations, we consider a four-state convo-
lutional code and a simplified Gilbert-Elliott channel with
the following parameters: � � 	�		�, � � 	��, � � �,
� � 	. � � � �� �� is given by:

� � � �� �� � �� �	�	��
 ��� �	�� 
 ��� �	�� �


��� �	�� 	 
 ��� �	�� � 
 ��	 �	�� �

��	��� � ��	 �	�� � � ��	 �	�� 	 � ��� �	�� �

�	�		� ��� 
 ���� �	�� � ��� �	�� 
 ��� �	�
 �


��� �	�
 	 
 ��� �	� � � ��� �	� � � ��� �	�� 



��	 �	�� ���� 
 ���� �	��� � ��� �	�� 
 ��� �	�� �

���� �	�� 	 � ��� �	�� � � ��� �	� � 
 ��� �	�� 


���� �	�� � 
 ��� �	��� ��	� � �	��� �	�� 
 	��� ��

	�� �� 
 ����� �	�� 
 ��	 �	�� 
 ��� �	�
 �

���� �	�� 	��	 
 ����� �	��� 
 ��� �	�� 
���� �	�� � 
 ��� �	�� 	 � ��� �	��� ������

For example, the coefficient �� in � � � �� �� is shown be-
low:

���� � � � �� �� � 	���� 
 	�		�� 
 	�		�� �

	�		�� 	 
 	�		�� � 
 	�		�� ��

To compute the performance of convolutional codes over
the interleaved channel with finite depth ��, we just need to
redefine the mapping �� as following:

�� � �� ��� �� ��
 �� �� ��� �� � �
�� �
 ��� 
 ��� ��� 
 ���

�����
�� �
 ��� 
  ��� ��� 
 ���

�����
(18)

It is important to notice that the �� � � symbols produced
by the channel between two received symbols are irrelevant
to the decision process. Figure 4 shows an upper bound
to ��� versus the memory �, for the encoder of Figure 1,
�� � ���,	 � �, over the interleaved Gilbert-Elliott chan-
nel, for several values of ��. The bound was computed us-
ing expressions (10), (11), (18), (13)-(16), and the matrices
used in (14) are defined in (1)-(3), where the parameters of
the Gilbert-Elliott channel are � � 	��, � � � � �	�	,
and & � ��� � �	. The model parameters � and � are
uniquely determined from � � � � � � � and &. The av-
erage error rate of the channel is fixed along the curves and
is equal to � � �	��. The solid lines are analytical results
and the dotted lines are obtained by simulations. The val-
ues of �� considered are �� � � (no interleaving), �� ��. It
is seen from the curves that the probability ��� converges
quickly to � when the channel memory increases. The per-
formance improves substantially when interleaving is incor-
porated into the system, and the optimum choice of �� for
a given memory value can be determined from this figure.
Because the Gilbert Elliott model has a parameter that can
be interpreted as the memory of the channel, the effective-
ness of coding schemes under several memory conditions
can be evaluated. The analytical bounds matches the simu-
lation results very closely when ��� ! �	�	.
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Figure 4: ��� versus memory for a specific convolutional
code, �� � ���, 	 � �, on interleaved Gilbert-Elliott
channels, having �� as a parameter. �� � �� �� ��. The
channel parameters are � � 	��, � � � � �	�	, and
& � ��� � �	. The dotted lines are obtained by simu-
lations.



4. CONCLUSIONS

The generating series for all codewords of infinite dimen-
sionality produced by a convolutional code was derived and
new bounds to the first-event error probability and bit er-
ror probability for convolutional codes over general FSC
models were given. The generating series for burst chan-
nels is more refined than the one required for memoryless
channels. We take into account the presence of delay con-
straints, which may limit the maximum value of the inter-
leaving depth. The accuracy of the analytical bounds was
demonstrated by comparing them with simulation results.
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