
THE ηηηη-µµµµ DISTRIBUTION
Michel Daoud Yacoub

DECOM/FEEC/UNICAMP
C.P. 6101

13083-970 Campinas, SP, Brazil
michel@decom.fee.unicamp.br

ABSTRACT

This paper presents a general fading distribution – the η-µ
Distribution – that includes the One-Sided Gaussian, the
Rayleigh, and, more generally, the Nakagami distributions as
special cases. Rice and Lognormal distributions may also be
well-approximated by the η-µ Distribution. Preliminary results
show that the η-µ Distribution provides a very good fitting to
experimental data.

1. INTRODUCTION

The propagation of energy in a mobile radio environment is
characterized by incident waves interacting with surface
irregularities via diffraction, scattering, reflection, and
absorption. The interaction of the wave with the physical
structures generates a continuous distribution of partial waves
[1], with these waves showing amplitudes and phases varying
according to the physical properties of the surface. The
propagated signal then reaches the receiver through multiple
paths. If the waves are not resolvable within the available
bandwidth or if an appropriate signal treatment is not carried out,
the result is a combined signal that fades rapidly, characterizing
the short term fading. For surfaces assumed to be of the Gaussian
random rough type, universal statistical laws can be derived in a
parameterized form [1].

A great number of distributions exists that well describe the
statistics of the mobile radio signal. Extensive field trials have
been used to validate these distributions and the results show a
very good agreement between measurements and theoretical
formulas. The long term signal variation is well characterized by
the lognormal distribution whereas the short term signal variation
is described by several other distributions such as Rayleigh, Rice,
Nakagami, and Weibull, though to the latter, originally derived
for reliability study purposes, little attention has been paid. It is
generally accepted that the path strength at any delay is
characterized by the short term distributions over a spatial
dimension of a few hundred wavelengths, and by the lognormal
distribution over areas whose dimension is much larger [2].
Three other distributions attempt to describe the transition from
the local distribution to the global distribution of the path
strength, thus combining both fast and slow fading. These
composite (or mixed) distributions assume the local mean, which
is the mean of the fast fading distribution, to be lognormally
distributed. The best known composite distributions are
Rayleigh-lognormal, also known as Suzuki, Rice-lognormal, and
Nakagami-lognormal.

In fact, the Rayleigh distribution constitutes a special case of the
Rice, Nakagami, Weibull, and the composite distributions and
can be obtained in an exact manner by appropriately setting the
parameters of these distributions. Nakagami-m and Rice are
found to approximate each other by some simple equations
relating the physical parameters associated to each distribution..

Among these, the Nakagami-m distribution has been given a
special attention for its ease of manipulation and wide range of
applicability [3]. Although, in general, it has been found that the
fading statistics of the mobile radio channel may well be
characterized by the Nakagami-m, situations are easily found for
which other distributions such as Rice and even Weibull yield
better results [4, 5]. More importantly, situations are encountered
for which no distributions seem to adequately fit experimental
data, though one or another may yield a moderate fitting. Some
researches [5] even question the use of the Nakagami distribution
because  its tail does not seem to yield a good fitting to
experimental data, better fitting being found around the mean or
median.

This paper presents a general fading distribution -  the η-µ
Distribution - that includes the One-Sided Gaussian, the
Rayleigh, and, more generally, the Nakagami-m distributions as
special cases. Rice and Lognormal distributions may also be
well-approximated by the η-µ Distribution.

2. THE ηηηη-µµµµ DISTRIBUTION

The η-µ distribution is a general fading distribution that can be
used to better represent the small scale variation of the fading
signal. For a fading signal whose envelope is r  and whose
envelope ρ  normalized with respect to the rms value is given by

( )2rE

r=ρ , the η-µ probability density function ( )ρp  is

written as
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function, ( ).νI  is the modified Bessel function of the first kind
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10 ≤≤ η . (In fact, the distribution is symmetrical for

∞<≤ η1 , or equivalently 10 1 ≤≤ −η , in which case

4
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∞<≤ η0  and 41−−= nH η . But, due to the symmetry

around 1, it suffices to consider η  within one of the ranges only.)

From the restrictions given we observe that that 4
1≥µ ,

obtainable for 1=η .

For a fading signal with power 22rw =  and normalized power

( )wE
w=ω  the η-µ probability density function ( )ωp  is given

by
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3. PHYSICAL MODEL

The well-known fading distributions have been derived assuming
a homogeneous diffuse scattering field, resulting from randomly
distributed point scatterers. With such an assumption, the central
limit theorem leads to complex Gaussian processes with in-phase
and quadrature Gaussian distributed variables x and y having zero
means and equal standard deviations. In case one cluster of
multipath wave is considered then the Rayleigh distribution can
be obtained. If a specular component predominates over the
scattered waves, then the Rice distribution is accomplished. The
Nakagami signal can be understood as composed of clusters of
multipath waves so that within any one cluster the phases of
scattered waves are random and have similar delay times with
delay-time spreads of different clusters being relatively large.
The assumption of a homogeneous diffuse scattering field is
certainly an approximation because the surfaces are spatially
correlated characterizing a non-homogeneous environment [1].

The fading model for the η-µ Distribution considers a signal
composed of clusters of multipath waves propagating in an non-
homogeneous environment. Within any one cluster, the phases of
the scattered waves are random and have similar delay times with
delay-time spreads of different clusters being relatively large.

4. DERIVATION OF THE ηηηη-µµµµ DISTRIBUTION

Given the physical model for the η-µ Distribution the envelope
r can be written in terms of the in-phase and quadrature
components of the fading signal as
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carried by following the standard, but long and tedious,
procedure so that
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the first kind order zero. Note that 10 ≤≤ η  defines the region
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where h  and H are as previously defined. The density ( )iwp

of the power 
iw  is easily found by a simple transformation of

variables and it is given by
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where ( )iwEw =0
. The Laplace transform ( )[ ]iwpL  of ( )iwp

is found in an exact manner as [6, pag. 1025, Eq. 29.3.60]
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The corresponding density of the envelope is found to be
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From Equation 3 we find that ( ) ( ) 22 1 ynrE ση+=  and

( ) ( ) 422 12 ynrVar ση+= . Thus
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Note from Equation 6 that 2n  may be totally expressed in

terms of physical parameters such as mean squared value,
variance of the power, and power of the in-phase and quadrature
components of the fading signal. Note also that whereas these
physical parameters are of a continuous nature, 2n  is of a

discrete nature (integer multiple of 21 ). It is plausible to

presume that if these parameters are to be obtained by field
measurements, their ratios, as defined in Equation 6, will
certainly lead to figures that may depart from the exact 2n .

Several reasons exist for this. One of them, probably the most
significant one, is that, although the model proposed here is
general, it is in fact an approximate solution to the so-called
random phase problem, as are approximate solution to the
random phase problem all the other well-known fading models.
The limitation of the model can be made less stringent by
defining µ  as
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µ  being the real extension of 2n . (We note that in derivation

of the Nakagami model [7], the parameter n , which describes the
number of “component signals”, therefore discrete, is also written
in terms of the Nakagami continuous parameter m  as 2nm = .)

It has been observed experimentally by Nakagami [7] that
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(or equivalently 10 1 ≤≤ −η ) and µ  assuming any real value
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obtained at 1=η , in which case 4
1≥µ , i.e. the minimum

value that may be assumed by µ  is 0.25.

The densities can now be written as
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which, in the normalized form, are given as in Equations 1 and 2,
respectively.

5. THE ηηηη-µµµµ DISTRIBUTION AND THE OTHER
FADING DISTRIBUTIONS

The η-µ Distribution is a general fading distribution that includes
the One-Sided Gaussian, the Rayleigh, and, more generally, the
Nakagami distributions as special cases. Rice and Lognormal
distributions may also be well-approximated by the η-µ
Distribution. We note that the One-Side Gaussian and the
Rayleigh distributions can be obtained from the Nakagami
distribution by setting the Nakagami parameter 5.0=m  and

1=m , respectively. Therefore, in order to relate the η-µ
Distribution with these two distributions it suffices to relate it
with the Nakagami one.

The Nakagami distribution can be obtained in an exact manner
from the η-µ Distribution for m=µ  and 0→η  (or

equivalently ∞→η ) or, in the same way, for 2m=µ  and

1→η . This result is not straightforwardly seen from the

densities here derived. We observe, nonetheless, that for these
conditions all the Gaussian variates present identical variances
and the fading model proposed here deteriorates into that of [8],
where the Nakagami distribution is obtained in an exact manner.
For intermediate values of η  the η-µ distribution and the

Nakagami distribution relate to each other for 
( ) m=
+
+
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This is a very interesting result which shows that an infinite
number of curves of the η-µ distribution can be found that
presents the same Nakagami parameter m , conditioned on the

fact that the constraints mm ≤≤ µ2  and 
m
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satisfied. The Lognormal distribution, given as a function of m
in Equation 13 of [7], can also be approximated by the η-µ
Distribution for ee ≤≤− ρ1 , and for η , µ , and m  satisfying

the relations given above for the Nakagami case. In the same
way, an infinite number of curves of the η-µ Distribution can be
found that presents the same Nakagami parameter for the
Lognormal distribution. The Rice distribution can be

approximated by the η-µ distribution for 
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where 0≥k  is the Rice parameter. In the same way, this result
shows that an infinite number of curves of the η-µ Distribution
can be found that presents the same Rice parameter k,
conditioned on the fact that the constraints
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6. SAMPLE EXAMPLES OF THE ηηηη-µµµµ
DISTRIBUTION

This section shows some plots of the η-µ Distribution. Figure 1
depicts a sample of the various shapes of the η-µ probability
density function ( )ρp  as a function of the normalized envelope

ρ  for the same Nakagami parameter m = 0.5 (One-Sided

Gaussian). Figure 2, 3, and 4 do the same but respectively for m
= 0.75, 1.0 (Rayleigh), and 1.25. Figure 5 illustrates a sample of
the various shapes of the η-µ probability distribution function

( )ρP  as a function of the normalized envelope ρ  for the same

Nakagami parameter m = 1.0 (Rayleigh). Figure 6 does the same
but for m = 1.25. The plots are carried out for 1→η , η = 0.62,

0.4, 0.25, 0.16, 0.10, 0.05, 0.015, and 0→η  (which in decibels

correspond to approximately   0, -4, -8, -12, -16, -20, -26, -36,
and -∞ dB). The curves for which 1→η  and 0→η  coincide

with each other and also with the Nakagami one, and this is
indicated in all Figures by the arrow sign. In such cases,

2m=µ  and m=µ , respectively.

It can be seen that, although the normalized variance (parameter
m) is kept constant for each Figure, the curves are substantially
different from each other.  And this is particularly noticeable for
the distribution function, in which case the lower tail of the
distribution may yield differences in the probability of some
orders. Moreover, the curves present a very interesting feature, as
described next. For the same value of m and departing from the
condition for which 1→η , as η diminishes the curves depart

from that for which 1→η , initially keeping a similar shape. As

η diminishes the shapes of the curves change substantially. As η
diminishes even further and as 0→η , the curves merge with

that of the initial shape but such curves present shapes very
different from those obtained as 1→η . This feature renders the

η-µ  Distribution very flexible and this flexibility can be used in
order to adjust the curves to practical data.

7. CONCLUSIONS

This paper presented a general fading distribution – the  η-µ
Distribution - that can be used to better represent the small scale
variation of the fading signal. The distribution includes the One-
Sided Gaussian, the Rayleigh, and, more generally, the
Nakagami-m distributions as a special cases and offers a higher
degree of freedom. It also approximates the Rice and Lognromal
distributions. Preliminary results show that the η-µ  Distribution
provides a very good fitting to experimental data.
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Figure 1: A sample of the various shapes of the η-µ
probability density function for the same Nakagami
parameter m = 0.5. The arrow indicates the conditions

1→η , 25.0=µ and 0→η , 5.0=µ , for which the

curves coincide with that of Nakagami.
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Figure 2: A sample of the various shapes of the η-µ
probability density function for the same Nakagami
parameter m = 0.75. The arrow indicates the conditions

1→η , 375.0=µ and 0→η , 75.0=µ , for which

the curves coincide with that of Nakagami.
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Figure 3: A sample of the various shapes of the η-µ
probability density function for the same Nakagami
parameter m = 1.0. The arrow indicates the conditions

1→η , 5.0=µ and 0→η , 0.1=µ , for which the
curves coincide with that of Nakagami.
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Figure 4: A sample of the various shapes of the η-µ
probability density function for the same Nakagami
parameter m = 1.25. The arrow indicates the conditions

1→η , 625.0=µ and 0→η , 25.1=µ , for which

the curves coincide with that of Nakagami.
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Figure 5: A sample of the various shapes of the η-µ
probability distribution function for the same Nakagami
parameter m = 1.0. The arrow indicates the conditions

1→η , 5.0=µ and 0→η , 0.1=µ , for which the

curves coincide with that of Nakagami.
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Figure 6: A sample of the various shapes of the η-µ
probability distribution function for the same Nakagami
parameter m = 1.25. . The arrow indicates the conditions

1→η , 625.0=µ and 0→η , 25.1=µ , for which

the curves coincide with that of Nakagami.


