
1

THE κκκκ-µµµµ DISTRIBUTION
Michel Daoud Yacoub

DECOM/FEEC/UNICAMP
C.P. 6101

13083-970 Campinas, SP, Brazil
michel@decom.fee.unicamp.br

ABSTRACT

This paper presents a general fading distribution – the κ-µ
Distribution - that includes the Rice and the Nakagami-m
distributions as special cases. Therefore the One-Sided Gaussian
and the Rayleigh distributions also constitute special cases and
the Lognormal distribution may be well-approximated by the κ-µ
Distribution. Preliminary results show that the κ-µ Distribution
provides a very good fitting to experimental data.

1. INTRODUCTION

The propagation of energy in a mobile radio environment is
characterized by incident waves interacting with surface
irregularities via diffraction, scattering, reflection, and
absorption. The interaction of the wave with the physical
structures generates a continuous distribution of partial waves
[1], with these waves showing amplitudes and phases varying
according to the physical properties of the surface. The
propagated signal then reaches the receiver through multiple
paths. If the waves are not resolvable within the available
bandwidth or if an appropriate signal treatment is not carried out,
the result is a combined signal that fades rapidly, characterizing
the short term fading. For surfaces assumed to be of the Gaussian
random rough type, universal statistical laws can be derived in a
parameterized form [1].

A great number of distributions exists that well describe the
statistics of the mobile radio signal. Extensive field trials have
been used to validate these distributions and the results show a
very good agreement between measurements and theoretical
formulas. The long term signal variation is well characterized by
the Lognormal distribution whereas the short term signal
variation is described by several other distributions such as
Rayleigh, Rice, Nakagami-m, and Weibull, though to the latter,
originally derived for reliability study purposes, little attention
has been paid. It is generally accepted that the path strength at
any delay is characterized by the short term distributions over a
spatial dimension of a few hundred wavelengths, and by the
Lognormal distribution over areas whose dimension is much
larger [2]. Three other distributions attempt to describe the
transition from the local distribution to the global distribution of
the path strength, thus combining both fast and slow fading.
These composite (or mixed) distributions assume the local mean,
which is the mean of the fast fading distribution, to be
lognormally distributed. The best known composite distributions
are Rayleigh-lognormal, also known as Suzuki, Rice-lognormal,
and Nakagami-m-lognormal.

In fact, the Rayleigh distribution constitutes a special case of the
Rice, Nakagami-m, Weibull, and of the composite distributions
and can be obtained in an exact manner by appropriately setting
the parameters of these distributions. Nakagami-m and Rice are
found to approximate each other by some simple equations
relating the physical parameters associated to each distribution.

Among these, the Nakagami-m distribution has been given a
special attention for its ease of manipulation and wide range of
applicability [3]. Although, in general, it has been found that the
fading statistics of the mobile radio channel may well be
characterized by the Nakagami-m, situations are easily found for
which other distributions such as Rice and even Weibull yield
better results [4, 5]. More importantly, situations are encountered
for which no distributions seem to adequately fit experimental
data, though one or another may yield a moderate fitting. Some
researches [5] even question the use of the Nakagami-m
distribution because its tail does not seem to yield a good fitting
to experimental data, better fitting being found around the mean
or median.

This paper presents a general fading distribution - the κ-µ
Distribution - that includes the Nakagami-m, Rice, One-Sided
Gaussian, and Rayleigh distributions as special cases. The
Lognormal distribution may also be well-approximated by the κ-
� Distribution.

2. THE κκκκ-µµµµ DISTRIBUTION

The κ-µ distribution is a general fading distribution that can be
used to represent the small scale variation of the fading signal.
For a fading signal with envelope r  and normalized envelope

r
r
ˆ=ρ , ( )2ˆ rEr =  being the rms value of r , theκ-�

probability density function ( )ρp  is written as
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where 0≥κ  is the ratio between the total power of the dominant
components and the total power of the scattered waves, 0≥µ  is

given by 
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, and ( ).νI  is the

modified Bessel function of the first kind and arbitrary order ν
(ν  real).

For a fading signal with power 22rw =  and normalized power

w
w=ω , where ( )wEw = , the κ-µ probability density function

( )ωp  is given by
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3. PHYSICAL MODEL

The well-known fading distributions have been derived assuming
a homogeneous diffuse scattering field, resulting from randomly
distributed point scatterers. With such an assumption, the central
limit theorem leads to complex Gaussian processes with in-phase
and quadrature Gaussian distributed variables x and y having zero
means and equal standard deviations. In case one cluster of
multipath wave is considered, then the Rayleigh distribution can
be obtained. If a specular component predominates over the
scattered waves, then the Rice distribution is accomplished. The
Nakagami-m signal can be understood as composed of clusters of
multipath waves so that within any one cluster the phases of
scattered waves are random and have similar delay times with
delay-time spreads of different clusters being relatively large.
The κ-µ distribution describes the fading behavior of a signal
propagating in an non-homogeneous environment.

The fading model for the κ-µ Distribution considers a signal
composed of clusters of multipath waves propagating in an
homogeneous environment. Within any one cluster, the phases of
the scattered waves are random and have similar delay times with
delay-time spreads of different clusters being relatively large.
The clusters of multipath waves are assumed to have the scattered
waves with identical powers but within each cluster a dominant
component is found that presents an arbitrary power.

4. DERIVATION OF THE κκκκ-µµµµ
DISTRIBUTION

Given the physical model for the κ-µ Distribution the envelope,
the envelope r can be written in terms of the in-phase and
quadrature components of the fading signal as
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2 ψξγ . Define ( )ip ξ  and ( )ip ψ  as the

densities of 
iξ  and 

iψ  respectively. In such a case
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where 
ii ξλ =  and 

ii ps =  or 
ii ψλ =  and 

ii qs =  The

Laplace transform ( )[ ]ipL λ  of ( )ip λ  is found in an exact

manner as [6, page 1026, Eq. 29.3.77]
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where s is the complex frequency (Laplace variable). Knowing
that 

iξ  and 
iψ , i = 1, 2, ..., n, are mutually independent, the

Laplace transform ( )[ ]γpL  of ( )γp  is found as a n2 -fold

multiplication of ( )[ ]γpL . Therefore
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whose inverse is given by [6, page 1026, Eq. 29.3.77]
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It is possible to show that [ ] ( )∑ =
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We define 
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the total power of the dominant components and the total power
of the scattered waves. Then
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Note from Equation 5 that n  may be totally expressed in terms of
physical parameters such as mean squared value, variance of the
power, and the ratio of the total power of the dominant
components and the total power of the scattered waves of the
fading signal. Note also that whereas these physical parameters
are of a continuous nature, n  is of a discrete nature. It is
plausible to presume that if these parameters are to be obtained
by field measurements, their ratios, as defined in Equation 5, will
certainly lead to figures that may depart from the exact n .
Several reasons exist for this. One of them, probably the most
meaningful one, is that, although the model proposed here is
general, it is in fact an approximate solution to the so-called
random phase problem, as are approximate solution to the
random phase problem all the other well-known fading models.
The limitation of the model can be made less stringent by
defining µ  as
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µ  being the real extension of n . (We note that in derivation of

the Nakagami-m model [7], the parameter n , which describes the
number of “component signals” [7], therefore discrete, is also
written in terms of the Nakagami continuous parameter m  as

2nm = .) It has been observed experimentally by Nakagami [7]

that ( )
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with 0≥κ  and 0≥µ . Using the definitions and the

considerations as above and by means of a transformation of
variables and a series of algebraic manipulations, the κ-µ
probability density function of the envelope can be written from
Equation 4 as
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In the same way, the probability density function of the power is
given as
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Equations 9 and 10 in their normalized forms are respectively
given by Equations 1 and 2.

5. THE κκκκ-µµµµ DISTRIBUTION AND THE
OTHER FADING DISTRIBUTIONS

The κ-µ Distribution is a general fading distribution that includes
the best known fading distributions, namely Rice and Nakagami-
m distributions. Note that both Rice and Nakagami-m include the
Rayleigh distribution and the Nakagami-m includes the One-
Sided Gaussian. Therefore, these distributions can also be
obtained from the κ-µ Distribution. The Lognormal distribution
may also be well-approximated by the κ-µ Distribution.

5.1 Rice and Rayleigh

The Rice distribution describes a fading signal with one cluster of
multipath waves in which one specular component predominates
over the scattered waves. Therefore, by setting 1=µ  in Equation

1, the κ-µ Distribution reduces to

( ) ( )
( ) ( )( ) ( )( )ρκ+κρκ+−ρ
κ
κ+=ρ 121exp

exp

12
0

2 Ip     (11)

which is the Rice probability density function for the normalized
envelope. In this case, the parameter κ  coincides with the well-
known Rice parameter k . Now setting 0=κ  in Equation 11
(therefore, 1=µ  and 0→κ  in the κ-µ Distribution) the

Rayleigh distribution can be obtained in an exact manner.
Moreover, for )1(1 −+−= mmmκ  in Equation 11 (therefore

1=µ  and )1(1 −+−= mmmκ  in the κ-µ Distribution),

where m  is the Nakagami parameter, the Nakagami-m
distribution can be obtained in an approximate manner.
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5.2 Nakagami-m, Rayleigh, and One-Sided
Gaussian

The Nakagami-m signal can be understood as composed of
clusters of multipath waves with no dominant components within
any cluster. Therefore, by setting 0=κ  in the κ-µ Distribution it
should be possible to obtain the Nakagami-m distribution. We
note, however, that, apart from the case 1=µ , which has been

explored in the previous subsection, the introduction of 0=κ  in
the κ-µ Distribution leads to an indeterminacy (zero divided by
zero). For small arguments of the Bessel function the relation

( ) ( ) ( )µµ
µ Γ≈ −

−
1

1 2zzI  holds [6, page 375, Eq. 9.6.7]. Using

this in Equation 1, and after some algebraic manipulation,
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which is the exact Nakagami-m density function for the
normalized envelope. In this case, the parameter µ  coincides

with the well-known Nakagami parameter m . Now setting

1=µ  in Equation 13 (therefore, 1=µ  and 0→κ  in the κ-�

Distribution) the Rayleigh distribution can be obtained in an
exact manner. In the same way, by setting 5.0=µ  in Equation

13 (therefore, 5.0=µ  and 0→κ  in the κ-µ Distribution) the

One-Sided Gaussian distribution can be obtained in an exact
manner. Moreover, for ( ) ( )kk 211 2 ++=µ  in Equation 13

(therefore 0→κ  and ( ) ( )kk 211 2 ++=µ  in the κ-µ
Distribution), where k  is the Rice parameter, the Rice
distribution can be obtained in an approximate manner. The
Lognormal distribution, given as a function of m  in Equation 13
of [7], can also be approximated by the κ-µ Distribution for

ee ≤≤− ρ1 , and for 0→κ  and m=µ .

6. APPLICATION OF THE κκκκ-µµµµ
DISTRIBUTION

The κ-µ Distribution, as implied in its name, is based on two
parameters, κ  and µ . Its use involves a procedure similar to

that of the other distributions, as explained next. From Equation
6, it can be seen that the two parameters κ  and µ  can be

expressed in terms of the ratio between the mean squared value
and the variance of the power, which is usually defined as m . In
other words

( )
κ+
κ+µ=

21

1 2

m (14)

For a given m , the parameters κ  and µ  are chosen that yield

the best fitting. Note, on the other hand, that, for a given m , the
parameter µ  shall lie within the range m  and 0 , obtained for

0=κ  and ∞→κ , respectively. Therefore, for a given m

m≤µ≤0 (15)

The parameter µ  is then chosen within the range of Equation 15.

Given that µ  has been chosen, then κ  must be calculated as
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so that the relation as in Equation 14 be kept.

7. SAMPLE EXAMPLES OF THE κκκκ-µµµµ
DISTRIBUTION

This section shows some plots of the κ-µ Distribution. Figure 1
and Figure 2, respectively, depict a sample of the various shapes
of the κ-µ probability density function ( )ρp  and probability

distribution function ( )ρP  as a function of the normalized

envelope ρ  for the same Nakagami parameter 75.0=m . Figure

3 and Figure 4 do the same but for 5.1=m . The plots are
illustrated for 0→κ , =κ 0.69, 1.37, 2.41, 4.45, 10.48, and
28.49 (which in decibels correspond to approximately -∞, -1.6,
1.4, 3.8, 6.5, 10.2, and 14.6 dB). The corresponding values of µ
are respectively 0.75, 0.625, 0.5, 0.375, 0.25, 0.125, and 0.05 for
Figure 1 and Figure 2, and 1.5, 1.25, 1.0, 0.75, 0.5, 0. 25, and 0.1
for Figure 3 and Figure 4. The curves for which 0→κ  coincide
with the Nakagami-m curve, in which case m=µ . The curve for

which 1=µ  coincides with the Rice curve.

It can be seen that, although the normalized variance (parameter
m) is kept constant for each Figure, the curves are substantially
different from each other. And this is particularly relevant for the
distribution function, in which case the lower tail of the
distribution may yield differences in the probability of some
orders. This feature renders the κ-µ Distribution very flexible and
this flexibility can be used in order to adjust the curves to
practical data [9].
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8. CONCLUSIONS

This paper presented a general fading distribution – the κ-µ
Distribution – that that can be used to better represent the small
scale variation of the fading signal. The distribution includes the
One-Sided Gaussian, the Rayleigh, and, more generally, the
Nakagami-m and the Rice distributions as special cases and
offers a higher degree of freedom. Preliminary results show that
the κ-µ Distribution provides a very good fitting to experimental
data.
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Figure 1: A sample of the various shapes of the κ-µ
probability density function for the same Nakagami
parameter 75.0=m . The Nakagami-m curve is obtained
for the condition 0→κ  ( 75.0=µ ).

Figure 2: A sample of the various shapes of the κ-µ
probability distribution function for the same Nakagami
parameter 75.0=m . The Nakagami-m curve is obtained
for the condition 0→κ  ( 75.0=µ ).
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Figure 3: A sample of the various shapes of the κ-µ
probability density function for the same Nakagami
parameter 5.1=m . The Nakagami-m curve is obtained
for the condition 0→κ  ( 5.1=µ ). The Rice curve is

obtained for the condition 0.1=µ  ( 37.1=κ ).

Figure 4: A sample of the various shapes of the κ-µ
probability distribution function for the same Nakagami
parameter 5.1=m . The Nakagami-m curve is obtained
for the condition 0→κ  ( 5.1=µ ). The Rice curve is

obtained for the condition 0.1=µ  ( 37.1=κ ).


