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Abstract – Orthogonal Galois-field spreading
sequences are a new tool to perform multilevel direct
sequence spread spectrum communication (DS-SS).
By defining a generalised finite field correlation,
main properties of these digital sequences are
derived. Besides, it is shown that good correlation
properties of these “carriers” allow anti-jamming
and multiple access capabilities. Systems which
employ Galois-field spreading sequences are the so-
called Galois-Division Multiple Access (GDMA). An
attempt to classify GDMA signals as spread spectrum
signals, by means of a more elegant treatment, is
also supplied.
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1. INTRODUCTION

Finite field transforms have successfully been applied
to perform spread spectrum communications [3],[4].
These new efficient digital schemes for band-limited
channels, termed Galois-Division Multiple Access
(GDMA), were originally presented in [3]. It is known
that GDMA systems offer compact bandwidth
requirements because only leaders of cyclotomic
cosets are required to be transmitted [2],[4]. In a
companion paper [7], GDMA figures of merit are
evaluated, as well as its performance over noisy
channels.

GDMA synchronous spreading sequences are denoted
Galois-carriers. The main purpose of this paper is to
derive Galois-carriers properties, inasmuch they allow
multiple access capability. The statement “Galois-
Division can perform multiple access
communications” will be clarified.

Developments in section 3 consider spread spectrum
signals. But, what is a spread spectrum signal? Under
which circumstances GDMA can be considered a
spread spectrum system? An attempt to provide a
more formal treatment of this subject is also presented
in section 4.

2. GALOIS-CARRIERS CORRELATION PROPERTIES

In spread spectrum communications, it is important
that the spreading sequences assigned to users make
possible a separation between the signal of a desired
user and the signals of interfering users [9]. Since this
separation is made by correlating the received signal

with the locally generated replica of the code signal of
the desired user, one can translate this demand to look
for a low cross-correlation between sequences
assigned to different users. Auto-correlation is also
important because it decides how well we are able to
synchronise and lock the locally generated replica to
the received signal. As correlation properties of
Galois-carriers play a very important role in the
remainder of this paper, we start investigating them.
The first step in this direction is to state a few
preliminaries.

Definition 1: Finite field direct and inverse sequences
are denoted by
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where xik and xtk* are elements constituting the direct
and inverse transform kernel of a finite-field transform
of blocklength N, respectively.                                   ■

Definition 2: The generalised finite field correlation is
given by the following expression
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where xi and xt* are the above defined sequences.     ■

The finite field transform chose to be applied is a
design option. Let us now investigate Galois-carriers
correlation properties.

Proposition 1: Consider the Finite Field Fourier
Transform (FFFT) [8]. The correlation property for
the resultant Galois-Fourier carriers {ci} is given by:
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where Rc(• ) is the auto-correlation function (ACF) of
the sequence {ci}.

Proof: Let α be an element of multiplicative order N
over GF(pm). According to (1a) and (1b), The Galois-
Fourier carriers are:
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From (2) we get:
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Supposing now that i ≡ t (mod N), the value of ACF at
the origin can be derived:
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On the other hand, if  i – t ≡ j ≠ 0 (mod N), then the
cross-correlation between Galois-Fourier carriers is
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since ord(α) = N.                                                         ■

Besides the FFFT, another finite field transform [1]
termed Finite Field Hartley Transform (FFHT) can be
used. It is a new finite field version of the integral
transform introduced by R. V. L. Hartley [5]. Let
GI(p) be the field of gaussian integers over a finite
field GF(p).

Proposition 2: Consider the FFHT. The correlation
property for resultant Galois-Hartley carriers is given
by:



 ≡

==− ∑
−

= casesother  ,0  

)(mod    ,1
)()(

1
)(

1

0

Nti
tcasicas

N
tiR k

N

k
kc

,    (5)

where R(• ) is the auto-correlation function (ACF) of
the sequence {ci}.

Proof: Let α be an element of multiplicative order N
over GI(p). From definition 1, Galois-Hartley carriers
are:
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It is worthwhile to mention that, due to the symmetry
of cask(• ), the FFHT belongs to a class of transforms
for which the kernel of direct and inverse transform is
exactly the same. From (2) we get:

∑
−

=
=

1

0

)()(
p) (mod 

1
),(

N

k
kkc tcasicas

N
tiR .

The definition of cask(• ) function [1] leads to:
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Once sink(• ) and cosk(• ) are orthogonal to each other
[1], the crossed terms vanishes:
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Applying now addition of arcs and symmetry
properties of sink(• ) and cosk(• ) [1]:
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Supposing that i ≡ t (mod N). The value of the ACF at
origin can be derived:
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On the other hand, if  i – t ≡ j ≠ 0 (mod N), then the
cross-correlation between Galois-Hartley carriers
becomes
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since j ≠ 0.                                                                   ■

3. COHERENT DETECTION OVER ADDITIVE NOISE

Consider a GDM-based digital communication
system. It is possible to consider the received signal as

R = V + W,

where V is the transform vector, defined over an
extension field, and W = (W0, W1, ..., WN-1), is a finite
field noise vector. We assume that information source
symbols are equally likely. In this case such a receiver
is a simple level detector. From now on y will denote
a decision variable.

In direct sequence spread spectrum (DS-SS) systems,
each information symbol is multiplied by a spreading
sequence [9], usually a pseudo-noise (PN) code. In our
framework, Galois-carriers correspond to GDM
spreading sequences [6]. Consider modulating each
user symbol with a Galois-carrier. Thus, each symbol
of duration T is coded into a sequence of N chips of
duration Tc = T / N. The increase in signalling rate
spreads the spectrum of the transmitted signal by a
factor of N.

Proposition 3: Galois-Fourier carriers can perform
direct sequence spread spectrum.

Proof: Consider a DS-SS system based on Galois-
field spreading sequences (4). The received sequence



(noisy spread vector), defined over GF(pm) can be
assumed as

k
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where k = 0, 1, ..., N–1. Then, the correlation receiver
performs the following operation so as to obtain the
decision variable y:
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which yields, based on (3):
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The second term is precisely the inverse FFFT of
{Wk}. Since {Wk} is a valid Galois-Fourier spectrum,
the {wi} ↔ {Wk} is a sequence on the ground field,
i.e., wi ∈ GF(p).                                                           ■

In this paper we are not concerned with performance
so finite-field noise distribution is not addressed.
However, no improvement over the additive channel
is observed compared with a non-spread system. A
similar result can be derived to Galois-Hartley
spreading sequences.

Proposition 4: Galois-Hartley carriers can be used to
perform direct sequence spread spectrum.

Proof: Consider a DS-SS system based on Galois-
field spreading sequences (6). The received sequence
(noisy spread vector), defined over GI(p), can be
described as

kkik WicasvR += )( ,

where k = 0, 1, ..., N–1. The correlator performs then
the following operation:
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It follows then from proposition 2 that
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It can be seen that the signalling rate is increased by a
factor of N, but this also increases the signal
bandwidth by a factor of N.

3.1 Anti-Jamming Capability

Cross-correlating a Galois-carrier will spread the
narrowband signal thereby reducing interfering in the
information bandwidth. This feature is called
interference rejection. Anti-jamming capability is
more or less the same as interference rejection except
the interference is now wilfully inflicted on the
system. This property together with the low
probability of interception (due to the low power
density of spread signals) makes this technique
attractive for some applications. As despreading is
almost the same operation as spreading a possible
jammer-signal in the channel is spread before the data
detection is done. Also this jammer won’t cause
problems.

Now suppose the channel contains an interferer: an
unknown constant is added to the received signal [9].
We assume that the interfering signal remains at the
same level over a time slot greater than T, a user data
symbol duration.

Proposition 5: Galois-Fourier carriers tolerate anti-
jamming communications.

Proof: Suppose that the spread sequence is

k
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where I is a constant over GF(pm) and k = 0, 1, ..., N–1.
Then the correlation receiver produces the following
decision variable:
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Proposition 6: Galois-Hartley carriers allow anti-
jamming communication.

Proof: Let us assume that we have
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where I is a constant over GI(p) and k = 0, 1, ..., N–1.
The correlation receiver output is
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In both cases, the interference is suppressed by
despreading (correlation) operation.

3.2 Multiple Access Capability

If multiple users transmit a spread spectrum signal at
the same time, the receiver will still be able to
distinguish between users provided that each user has
a unique sequence that has null cross-correlation with
the other sequences. Correlating the received signal
with a sequence signal from a certain user will then
only despread this user signal. Thus, the desired signal
can be extracted.

Now assume there are N users (transmitters), where
the kth transmitter modulates data with its particular
spreading sequence subscript k. In this case, the
Galois-carriers can be interpreted as signature codes.
As we shall see, the zero cross-correlations and
impulse-valued auto-correlations of Galois-carriers
allow direct sequence multiple access. Suppose that all
users are simultaneously transmitting, and we are
interested in recovering the signal from jth-user. Let us
assume a perfect time synchronisation between users.

Proposition 7: Galois-Fourier carriers can be used to
perform direct-sequence multiple access.

Proof: The received vector is:
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It follows that the correlation receiver for the jth-user
generates the decision variable yj:
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Proposition 8: Galois-Hartley carriers can also be
used to perform direct-sequence multiple access.

Proof: The received signal is:
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Therefore, the cross-correlation property of Galois-
carriers allows simultaneous transmission in the same
channel. This property grants spread spectrum based
on finite field transforms to be used as a new digital
multiple access method: the Galois-Division Multiple
Access, or GDMA.

4. GDMA SPREAD SPECTRUM SIGNALS

Properties derived in section 3 assumed GDMA
signals as spread spectrum signals. In order to enjoy
the features of wideband, we have to show that such
an assumption is true. A rather unconventional
definition (but found to be satisfactory) of a spread
spectrum signal is given below [6].

Definition 3: A spread spectrum signal is a signal
whose Fourier bandwidth is substantially greater than
its Shannon bandwidth.                                                           ■

In other words, a spread spectrum signal is a signal
that uses much more bandwidth than it needs. The
Fourier bandwidth denotes the ordinary notion of
bandwidth and the Shannon bandwidth is defined as
one-half the minimum number of dimensions per
second required to represent the modulated signal in a
signal space, i.e., B = N / 2T dim / sec.

For GDMA systems, the signal space is GF(pm) or
GI(p), depending on the finite field transform chosen.
Once field elements can be viewed as m-dimensional
vectors with GF(p)-valued components, we are
dealing with an m-dimensional signal space.
Therefore:
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The ratio of transmitted bandwidth to information
bandwidth denotes the processing gain Gp of the
spread spectrum system. Here Gp = N. For our
purposes, the following definition provides a better
tool (than Gp) to investigate, according to definition 3,
if a transmitted signal is in fact a spread spectrum
signal.

Definition 4: The spreading factor of a modulated
signal is the ratio of its Fourier bandwidth to its
Shannon bandwidth, i.e.,

B
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For every modulated signal, γ ≥ 1. A spread spectrum
signal is a signal with “large” γ, say γ > 5. Of course
the precise line between a spread spectrum signal and
an unspread one is rather arbitrary.

Example 1: Suppose that cyclotomic compression is
not used. Each user modulates a user-specific Galois-
carrier of length N (equal to the total number of users)
with one data symbol in each symbol period of
duration T. The full spectrum modulated signal can be
written as
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where v is the incoming data over GF(p), c are the
Galois-carriers, and 
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The spreading factor computation is carried out
substituting  (7) and (9) into (8):

m

N

m

T

T

N
GDMA == 2

2
γ .

Since the number of users is N = pm – 1,
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Indeed, binary non-expanded alphabet transmissions
has 1=γ and no spreading is achieved.

Example 2: Suppose that cyclotomic compression is
now used. Each user modulates a user-specific Galois-
carrier of length ν (equal to the number of cyclotomic
cosets associated with a finite field transform
spectrum) still with one data symbol in each symbol
period of duration T. After selecting only cyclotomic
leaders for transmission, the modulated signal is now
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where v is the incoming data and c are the Galois-
carriers. Hence, the Fourier bandwidth of this
compressed signal is:
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Taking (7) and (10) into (8) yields:
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Finally, the ratio γGDMA to γ’GDMA can be derived:
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where γcc = N / ν is exactly the bandwidth
compactness factor early introduced [2].

5. CONCLUDING REMARKS

This paper introduces a generalised finite field
correlation, which allows the deriving of interesting
properties for Galois-carriers. Among these properties,
the most important one is that GDM systems have
multiple access capabilities, yielding thus new digital
multiple access schemes: GDMA.

It was also shown that transmitted GDMA signals are
indeed spread spectrum when m > 1, i.e., provided
that higher alphabet extensions are taken. This is a
desirable feature, once increased alphabets have the
property of increasing the compactness factor (γcc) and
decreasing bandwidth requirements, achieving better
spectral efficiency regarding TDMA schemes.

The retrial of the user information requires that the
receiver’s own copy of the spreading sequence be
synchronised with the received version. Effects of
imperfect synchronisation over GDMA systems are
left to be investigated.
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