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ABSTRACT

We propose an estimator for the direction of arrival
(DOA) of plane waves incident on a linear equally spaced
array of sensors. The estimator uses the forward - back-
ward linear prediction filter optimized by means of the
total least squares criterion subject to constraints. The
DOA angles are estimated by the zeros of the optimum
filter. The proposed procedure performs better than
the maximum likelihood methods present in the litera-
ture.

1. INTRODUCTION

The problem of estimating the direction of arrival (DOA)
of plane waves incident on a linear equally spaced ar-
ray of sensors is considered in this paper. The DOA
problem and the array signal processing are present in
mobile communication, radar, sonar, seismology, radio
astronomy and industry applications [1].

The best methods for DOA estimation present in
the literature are those derived from the maximum like-
lihood estimator (MLE), like the MODE [2] and the
MODEX [3].

We propose a DOA estimator, named FBCTLS,
derived from the forward-backward linear prediction
(FBLP) filter [4], optimized using the constrained total
least squares criterion (CTLS) [5]. Some of the zeros of
the optimized FBLP filter lead to the estimation of the
DOA angles. The zeros that best estimate the angles
are selected by means of a maximum likelihood cost
criterion.

The proposed estimator is compared with the MODE
and MODEX and we show that the FBCTLS presents
advantages.

2. SIGNAL AND NOISE MODEL

The problem of estimating the direction of M narrow-
band plane waves impinging on a uniform linear array
of N sensors (N > M), can be reduced to the prob-
lem of estimating the frequencies w € RM*1 in the

following model [2]:
Ve = Axp+ng; k=1,...K (1)

where

yr € CV*1 is the kth noisy data vector (snapshot);

K is the number of data vectors collected from the
array through the time;

A=a; ... ayl;

a;=[1 e/ WD Ty =1 .  M;

X € CM*1 ig the signal vector ;

xp, = [ex(1)e? 2 e (M)ed oD T,

¢ (t) and ¢, (4) are the signal amplitudes and phases,
respectively;

n; € CN>< 1

()T denotes the transpose.

is the noise vector;

The signal and the noise are independent zero mean
complex stationary Gaussian random processes with
the following second-order moments:

E{XleH} = CékJ
E{nkan} = 021(5]97[

) xkxlT =0
; E}nkani =0 2

where F/{} is the expectation, C is the unknown signal
covariance matrix, 65 is the Kronecker delta operator,
02 is the unknown noise power, I is the identity matrix
and (.)? denotes the conjugate transpose.

All the concepts and equations to be presented in
the sections 3 and 4 and in the Appendix A refer to the
kth snapshot. Then we omitted the subscript “£”, like
that in the symbol y, in order to simplify the notation
in those sections and Appendix.

3. FORWARD-BACKWARD LINEAR
PREDICTION

The linear prediction leads to an estimator for the fre-
quencies w [6]. To present the estimator, consider a
forward linear prediction error filter of order L, M <
L < N, and coefficients b/= [—1 b{ bé]T, processing
y (for the kth snapshot) and producing the prediction



error [7]:

el (n) —|—be n—1)

cn=L+1, ..,N

Defining e/ = [e/(L+1)...¢f (N)]T and
y(L+1) -y
Y/ = A (4)
y(N) - y(N=L)

the equation (3) can be written as Y/ b/=e’.
Consider now a backward linear prediction error fil-

ter of order L and coefficients b’=[—1 v} .. 08|

processing y and producing the prediction error :

e®(n) —|—be n+1i);

n=1

3 eee

Defining e = [ (1) e’ (N - 1) ]T and
Y? =Y7?J, where J is a permutation matrix (its anti-
diagonal is composed by “ones”,
elements are “zeros”), the equation (5) can be written
as Yobb=eb .

For stationary signals and in the limit N — oo, it
can be shown that (Yf)H Y/

that b/, = (b,)",

whereas the others

where (.)" denotes the complex con-

jugate [7].
This result motivated the definition of the forward-
backward linear prediction, where bf = (bb)*is used

even for finite V. Defining b = bf = (bb)*7 Y =
vy ()" and e = [(e)" ()"]" . the for
mulation of the FBLP problem can now be expressed
as Yb = e . Then the optimum vector b,; is obtained
by minimizing ||e||, , where ||.||, denotes the 2-norm.

Consider the polynomial P(2) = —2% + b2t +
.. + by, obtained after the FBLP filter has been opti-
mized. In the absence of noise, P(z) has M zeros on the
unit circle at the positions {exp (jw;);i=1, ..., M}
(the signal zeros), whereas the remaining (L — M) ze-
ros (the noise zeros) are situated inside the unit circle
[6], [7]. Therefore, the frequencies w can be estimated
searching for the signal zeros on the unit circle [6].

The presence of the noise causes the zeros to fluctu-
ate around their noise free positions. But for signal-to
noise ratios (SNR) not excessively low, the frequencies
w can be estimated searching for the M zeros that are
closest to the unit circle [6].

= ((Yb)H Yb) ’ ,implying

4. THE FBLP AND THE CONSTRAINED
TOTAL LEAST SQUARES CRITERION

The least squares criterion is usually employed to op-
timize the forward-backward filter. This criterion as-
sumes that just one of the columns of Y has errors or
noise, whereas, in fact, all the columns are affected by
the noise. The total least squares (TLS) criterion [8],
[9] should be employed in this situation and its appli-
cation to the minimization of the energy of the FBLP
error e leads to following problem:

in ||AY
(ggﬂl |7

subject to (Y +AY)b=0 (6)
where |||, denotes the Frobenius norm, and AY is a
matrix composed of independent, identically distributed,
zero mean white random variables representing pertur-
bations to the matrix Y [8], [9].

Another aspect suggesting the use of the TLS crite-
rion is the Toeplitz and Hankel structures of the matrix
Y. They are not taken into account in the least squares
optimization process. Nevertheless, the constrained to-
tal least squares (CTLS) criterion is able to take into
account those structures [5], [9].

In the appendix A it is demonstrated that the ap-
plication of the CTLS criterion to the minimization of
energy of the FBLP error leads to following problem:

(bfgiyr}b) {(Ayfb)H P Ayfb} subject to

Yb + B Ayt =0
As B has rank 2(NV — L), the solution for (7) is [5]

by =argmin {b7Y" (BYP'B) 'Yb} (3)

5. THE FBCTLS METHOD

The problem (8) refers to the kth snapshot. When all
the K snapshots are considered, it is desirable to have
the same b,; solution for all of them, since the signal
and noise are stationary and the DOA angles are the
same for all the snapshots. Then the equations (20) and
(26) in the appendix A, show that both the matrices P
and B will also be the same for all the snapshots.

One possible strategy is to minimize the sum of the
terms inside the brackets in the equation (8) for k =
1,..., K , leading to

K

b, = argmln { Z [

(BYP'B)” 'Y4b}
k=1

)



It is shown in the appendix B that the problem (9)
can be written as

by = arg Iri)in {bHDHDb } subject to by = —1
(10)

where D is a matrix with dimensions 4M (N — L) x
(L 4+1). This is a fourth order minimization problem
with respect to b.

It will now be presented an iterative algorithm to
solve the problem (10). In the first step it is imposed
B =1 and the corresponding matrix D is calculated.
Therefore, the minimization problem is reduced to a
second order one which can be solved using the QR
decomposition [2]. This procedure leads to a first value
to b, which is used to update the B and D matrices. In
the second step, a new value for b is calculated using
the updated matrix D, and so on for the next steps. In
general, three such steps are suflicient for an adequate
convergence [2], [3].

Tt can be shown [2] that the solution to the second
order minimization problem at each step is given by
by = [~177]" wheren = Ry 'QDy; D =
D; = first column of D; Dy € C*MN-L)xL. D, =
QR (QR decomposition with Q € CAM(N - L)x4M(N-L)
and R € C*MN=L)xLy and

Q=[ Q@ Q2 ]; QecMW-LxL 17

R:[I({)O };ROECL“ (12)

Once the vector b,; has been calculated, the poly-
nomial P(z) is formed and the corresponding zeros are
calculated. Then the M signal zeros are estimated
searching for those M zeros that are closest to the unit
circle.

The above procedure was applied to an example
with the following parameters: number of plane waves
M = 2, signal correlation matrix C = I (uncorrelated
signals), number of sensors N = 10, frequencies to be
estimated w; = 0.5455 and wy = 0.8131, order of the
FBLP filter L = 6, number of snapshots K = 100. One
hundred different experiments were produced with the
above specifications, but with different realizations for
the random signal and noise. Referring to the expres-
sion (2), the signal-to-noise ratio (SNR) is defined as
SNR= trace (C) /Mo?.

The Figure 1 presents the superposition of the zeros
of the polynomial P(z) for the 100 experiments and
SNR= 15 dB. There are two signal zeros close to the
ideal positions defined by the desired frequencies on
the unit circle, whereas the noise zeros are distributed

[Dy Dy ;

inside the unit circle. Therefore, the desired frequencies
can be estimated searching for the two zeros that are
closest to the unit circle.

However, the variance of the zeros increases as the
SNR decreases and for SNR < 5dB there are noise zeros
closer to unit circle than the signal zeros. Therefore,
the estimation strategy based on searching for the two
zeros that are closest to the unit circle leads to a poor
performance.

We adopted another criterion for the selection of the
signal zeros to overcome this problem. We select the
M signal zeros as those that minimize the maximum
likelihood cost function for the DOA problem, given by

[3]
J(w) = [A (ATA) ' A —I} (Zym’f(@) (13)

where A is formed by the arguments of the zeros to
be tested. Then, for each group of M zeros among
the L zeros obtained at each experiment, we form the
corresponding A matrix and calculate J(w).
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Fig. 1 - Zeros in the z-plane: SNR=15 dB.

The Figure 2 shows the results achieved with the
proposed procedure applied to the above example with
L = 7. The root mean square error is calculated for
both frequencies after 100 different experiments and for
various values of the SNR. The Figure 2 also presents
the performance of the methods MODE [2] and MODEX
[3].

The FBCTLS presents better performance than the
classical MODE for SNR values lesser than 5 dB and
is competitive with the MODEX.

In order to compare the computational complex-
ity of three methods, observe that the MODE and
the MODEX solve problems similar to (10). But the
MODEX and the FBCTLS use L > M, whereas the
MODE uses I, = M. So the MODE is the most eco-
nomical in this part of the algorithm. Also, MODE



and MODEX demand similar computational effort to
obtain their optimum b vector. The MODE is also the
most economical when searching for the signal zeros
because it uses I. = M, that is, just the signal zeros.
In the other hand, the MODEX and the FBCTLS use
the maximum likelihood cost function in (13) to select
the signal zeros. Therefore, the MODE is the most
economical in terms of computational complexity.
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Fig. 2 - Root mean square error as a function of the

SNR for the FBCTLS, MODE and MODEX.

Although MODEX and FBCTLS are similar to each
other in the above calculations, the MODEX search for
the signal zeros in a ensemble composed by the sum of
the . > M zeros and the M MODE zeros. So the
MODEX is less economical than the FBCTLS as it
demands additional efforts to execute the MODE and
to search for the signal zeros.

The conclusion is that the FBCTLS and the MODEX
present similar performance. They perform better than
the MODE at a cost of additional computational ef-

forts. But the FBCTLS is more efficient than the MODEX

in terms of computational effort.

6. CONCLUSIONS

We proposed a new DOA method, FBCTLS, based on
the forward-backward linear prediction and the con-
strained total least squares criterion.

The proposed procedure leads to the same mini-
mization problem as those that are present in the most
popular maximum likelihood methods. The solution
was achieved by means of the same iterative algorithm
employed in the MODE and the MODEX methods.

The comparison study showed that the FBCTLS
and the MODEX perform similarly and that both are
better than the MODE. However, both demand ad-
ditional computational effort when compared to the

MODE. But the FBCTLS demand less computational
effort than the MODEX.
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8. APPENDICES
A. SOLUTION TO THE CTLS PROBLEM

The results presented in [5] permits to show that the
application of the CTLS criterion to the minimization
of the energy of the FBLP error leads to following prob-
lem:

(inYlg)) IAY]| subject to (14)
(Y+AY)b=0 (15)
where
AYS
AY:[ (av?)’ } (16)
AY! = [F{Ay....FéHAy} (17)
AY? = [Fl;Ay....Fi +1Ay} (18)
Ay = [By(1).. ()" (19)

Ay is a vector composed of independent, identi-
cally distributed, zero mean white random variables
representing perturbations to the vector y. The ch €
RWN=LIXN and the Fl c RWN=LIXN are matrices com-
posed by “ones” and “zeros”. Each row has (N — 1)
“zeros” and just one “one”, whose position is chosen

to assure that Y/ = {F{y F£+1y and Y? =

Fl{y F%+1y} . That is, the F; matrices describe the

structures of the Y7 and Y? matrices. Therefore, the
equations (17) and (18) show that AY7? and AY? are
matrices composed by the perturbation variables and
present the same structure as Y7 and Y?, respectively.

Referring to ||[AY]|| in the problem (14) and using
the expressions (16), (17), (18) and (19), it is possible
to write

H
IAY] = (Ay"")" P Ay (20)

where P = diag [p1 ... PN P1 - PN]on oy and the real
numbers p;, (¢ =1, ..., N) are weighting factors that

take into account how many times Ay(i) and Ay(i)*
appear in the AY matrix.

Referring to the equation (15), it is possible to verify
that

L+1
AY'b = |-F +) Floi | Ay (21)
=2
L+1
(AY")'b = [-F+> Fbia| Ay
=2
Let
PR S H
B, = [_FI + > F; bil}
=2 (N-L)xN
(22)
L+1 7
B, = |:—Ff—|— Z Fibbi1:|
i=2 (N—L)xN
Then
br, br-1 by -1 0 o 17
0 br, b by —1 0
By = .
0 0 —1
(23)
B, =JB,J (24)

Using these matrices and the expression (16), it is
possible to write

BY o0 Ay
— f
oY R[] e
Let
w_[BY o0
B _[ ¢ By |, (26)
(N—L)x2N
and
Ay
sy = 2] (27)
AY" Jonua

Using (25), (26) and (27), the expression (15), can
be written as

Yb+ BPAy/t =0 (28)

Finally, using the expressions (20) and (28) in the
problem (14) results

(bfgi}gb) {(Ayfb)H P Ayfb} subject to (29)

Yb+ BPAy/t =0 (30)



B. TRANSFORMATION OF THE CTLS
PROBLEM

The problem (9) is repeated here for convenience:

K
bo: = arg min {bH ; Y (B"P'B) 'Yy b}

(31)

We will introduce some modifications in the equa-
tion (31). First of all it can be verify that

Y:b =By/’ (32)

Applying expression (32) into the expression (31)
yields

b, =
K H _
= argmin {Z [(y,{b) B (BYP~!B) 1BHy£b”
k=1
= argmin trace {B (BYP~'B") ' BYR}’}
(33)

N K H
where R?J;b =5 yib (y};b) is a correlation estimator,
k=1

except for a constant.

It is worth noting that the problem (33) is the same
as those obtained in [2], [3], [10], [11] where the max-
imum likelihood criterion is used for the estimation of
the frequencies w.

Now a subspace restriction is used to reduce the
effect of the noise in the R/?matrix, following a proce-
dure inspired by that presented in [2].

Consider the singular value decomposition of the
matrix RI? [7], that is RJ? = UXU” where U =
[ul...ugN] ; UHU = I, ¥ = dZCLg ()\1...)\2]\]) and u;
are the singular vectors and \; are the singular values
ordered from the largest to the smallest.

In the case ny = 0 and for K — oo, it is shown
in [7] that A\; = 0 for 2M + 1 < ¢ < 2N. Imposing
this condition on f{?];b produces ]:'A{?J;bM = UMEMUf\{J
where [2]

UM = [u1 LIQM] ; EM = diCLg (041 OégM)

Let Uy, (EM)0'5 = V. It can be verified that

B?V =[S;b ... Sy)/b] where

Vr+1,4  --- V1,4
S — UN i UN-L,i (35)
. =
UN+1,i UN+L+1,i
L YaN—-Li --- V2N i

Substituting these results into the equation (33)
yields
b, =
= argmin trace {B (BYP'B) ' B RV |
= argmin trace { (B"P~'B) "' BYVV'B}
= argmin trace {[Sib ... S2ub]” (B P1B) "
[Sib ... Sob]}
(36)

Let BZP 1B = G¥ G where G is the Cholesky de-
composition of BYP~1B. Then the problem (36) can
be written as

by = argmin trace {[Slb .. Sorsb)”

G 1 (GH) ' [8ib ... ngb]} (37)

Finally, the last problem can expressed as

b, =argmin {b“D?Db } subject to by = —1

(38)
where
H 71
(G7) S
D- s (39)
HN1
(G ) Sam AM(N—L)x (L+1)
and the minimization in the problem (38) is subjected
to by = —1 in agreement with the definition of the
vector b.



