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ABSTRACT 

 
There are many coincidences that relate the treatment of quantum 
states in a two-dimensional space and the classical polarisation 
treatment, due to some similarities that occur in coherence matrix 
and density matrix. We use these similarities to separate the 
density matrix in a mixture of a pure state and a maximally mixed 
state. This mixture is controlled by the degree of purity, that 
measures how much pure is a quantum state, such as usually done 
with the coherence matrix of a partially polarised beam. After that, 
we use this degree of purity in quantum information theory. We 
find out its relationship with the von Neumann entropy and its use 
in quantum Kolmogorov distance, fidelity and mutual information. 
 

1. INTRODUCTION 
 
 Quantum communication is new area of 
telecommunications in which quantum states are used to 
carry information. The simplest quantum states are the pure 
states. These states can be completely characterized by one 
measurement. For example, the polarisation of one photon, 
when linearly polarised, can be identified, with 100% of 
certainty, by a polarisation measurement once there exists 
one measure that identify it with a probability equal to 1. 
The quantum state of a linearly polarised photon, with angle 
θ (between the electric field vector and the horizontal 
direction), is represented by [1]:  
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Equation (1) is the vector representation of the pure state 
and (2) is the density matrix representation. The density 
matrix is always Hermitean (eigenvalues always real), 
positive defined (non-negative eigenvalues) and has unitary 
trace. Quantum states can also be not pure. In this case, it is 
called a mixed state. There is no measurement able to 
identify a mixed state with 100% of certainty. A mixed state 
is represented by: 
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Concerning the photon’s polarization, we can say that the 
photon has the probability pi to be polarised with angle θi. 
Associated with the eigenvalues of ρ we have the von 
Newmann entropy [2]: 
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where the base of the log is assumed to be 2. If the quantum 
state is a pure state, we have S =0 and, if the state is 
maximally mixed (all eigenvalues are equal to 1/N), S = 
log(N), where N is the dimension of the space in which the 
density matrix belongs (or the number of eigenvalues). Let 
us now suppose the following experiment, shown in Fig. 1: 
The sender sends polarized photons to the receptor and this 
last will try to identify which state was sent measuring the 
photon polarisation. 
 
 
 
 
 
 
 
 
In Fig. 1, π0 (π1) is the a priori probability of the sender to 
send the pure state ρ0 (ρ1) = |θ � 	 θ| (|ϕ� 	 ϕ|). Since the 
receptor does not know which state will be sent, it “sees”  the 
mixed state: 
 

  1100 ρπρπρ +=  
 
In this case, the receptor will be able to identify the states 
sent only if ρ0 and ρ1 are orthogonal states (θ = ϕ ± 90°). 
Pure states are ideal for quantum communication. However, 
they are hard to preserve. Indeed, due to interaction with the 
environment, the pure states become mixed states. This 
process is called decoherence.   
 A partially polarised light can be decomposed in a sum 
of a completely depolarised beam and a completely 
polarised beam, J = Jnp + Jp, and its degree of polarisation, 
that shows how much polarised the light is, is defined as 
being equal to Tr(Jp) [1], where we assume the condition 
Tr(J)=1, necessary when a single photon light is considered. 
In the same way, we can split the density matrix, belonging 
to a two-dimensional space, in the sum of two other 
matrices, ρ =ρ1 + ρ2, and we can also define a degree of  
purity, gp, equal to Tr(ρ2). We have:   
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Figure 1 – Quantum communication system with polarized photons. 
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where I is the identity matrix and 
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In (6) and (7) ρij are the elements of ρ. The matrices ρ1 and 
ρ2 do not represent any quantum state, because they have 
not unitary traces. To get around this problem, we work with 
(6) to expand ρ in a mixture of a maximally mixed state and 
a pure state:  
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where the degree of purity now works as a probability. The 
necessary condition for the decompositions (6) and (9) to be 
unique is det(ρ2) = det(ρp) = 0.  gp is a  measure of purity of 
a quantum state, like the von Neumann entropy. The 
relationship between them can be found using the ρ's 
eigenvalues and the result is:  
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For a pure state S = 0 and gp = 1 and for maximally mixed 
state S = 1 [bit] and gp = 0. In  Figure 2 we show the plot of 
(10). 
 
 
 
 
 
 
 
 

 
 
 
 

 
2. QUANTUM KOLMOGOROV DISTANCE 

USING gp 
 
 For a communication system to work properly, the 
receptor must be able to distinguish the symbols sent by the 
sender. Hence, the receptor performs a measurement in the 

state sent and, according to its results, it infers which state 
(symbol) was sent. The quantum measurement known as 
POVM (positive operator value measurement), can be 
explained suscintly in the following way: For each possible 
result of a measure, { }mi rrr ,...,...,1

, one operator is 

associated }Ê,...,Ê,...Ê{ mi1 , where all operators iÊ  are 

positive semi-definite and the following condition 

Ι=� i iÊ  must be obeyed [2,3]. When we measure a 

quantum state, represented by the density matrix ρ, using 
this POVM, we obtain a probability distribution for the 
possible results, given by: 
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where p(r i|ρ) is the probability of the value r i to be obtained 
as the result of the measurement. Therefore, once the POVM 
was chosen, for each density matrix we have associated one 
probability distribution. Hence, we can distinguish two 
quantum states using the distinguishability measurements 
applied to distinguish between two probability distributions. 
One of the most useful is the error probability, PE. 
Choosing the POVM that maximizes the distinguishability, 
we have [3]:  
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  PE is not a distance measure. For a distance measure we 
can use the Kolmogorov distance, K, which is related to PE 
by: 
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 When the states are indistinguishable K=0 (PE = 0.5), and 
when the states are perfectly distinguishable K=1 (PE = 0). 
Let us now suppose two density matrices written in the form 
(9):    
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where, for simplification, the pure parts of (14) and (15) 
have no complex values. The Kolmogorov distance between 
these density matrices can be obtained applying (14) and 
(15) in (13): 
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Figure 2 - Entropy x Degree of Purity. 
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For example, the Kolmogorov distance between any pure 
state (gp = 1) and the maximally mixed state (gp = 0) is 0.5. 
In Fig. 3 we show a simulation of K(ρa,ρb), using (14) and 
(15), when the density matrices go from pure states to mixed 

states. The values used in the simulations were θ  = 4π  

and ϕ = 3π .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. NOISE CHANNEL AND MUTAL 
INFORMATION USING gp 

 
 The effect of noise in the channel is to transform a pure 
state in a mixed state. Let us take a quantum communication 
system where the source sends the quantum pure state |αi �  
with probability pi. After passing through the noisy channel, 

the state |αi �  evolves to one of the states{ }N

j

i
j 1=

β with 

probabilities { }N

j

i
jp

1=
, respectively [4], as shown in Fig. 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, each initial pure state |αi �  evolve to the mixture: 
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In (17), once more, we suppose that there are not complex 

values and 1=ΦΦ ii . We can find i
pg  from i

jp  

evaluating iii ΦΦ ρ in both sides of (17): 
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If |Φi �  ∈ { }N

j

i
j 1=

β , then (18) reduces to: 
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in which i

ni β=Φ  was supposed. To identify the 

quantum state sent, the receiver will perform a measure in 
the state received. Let's suppose that, for this, it uses the 

operator Â , with eigenvalues{ }M

kk 1=
ε , to perform the 

measurement. Thus, for the noisy channel described earlier, 
the classical mutual information per symbol, I = H(ρ)-
H(ρ|ε), where H is the Shannon entropy,  is given by: 
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The average mutual information and the Kholevo upper 
bound [2,5] are found to be: 
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As an example, we will analyse the quantum communication 
system shown in Fig. 5.  
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Figure 5– Binary quantum communication system. 
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In this figure, the emitter sends the pure states |0�  and |π/2� , 
with probabilities pa = pb = 0.5. After passing through the 
channel, |0�  and |π/2�  evolve to the mixed states ρa and ρb, 
respectively. These states are measured by the operator 
whose eigenvalues are the states |0�  and |π/2� . Using these 
data in (14) we find, for the classical mutual information per 
symbol, the following equations: 
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Comparing (24) and (25) with (23), we observe that the 
Kholevo’s limit was achieved due to correct choice of the 
measurement basis. In Fig. 6 we can see a plot of the 
average information, (26). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At last, the fidelity, F, measures the channel quality for the 
transmission of quantum states. Suppose that the quantum 
source transmits the pure state |θi �  with probability pi, and 
each pure state |θi � , after propagation in the channel, evolves 
to the mixed state ρi. The fidelity, F, is given by [2,3,5]: 
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For the system shown in Fig. 5 we have: 
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If the states at the output of the channel are equal to the 
states sent, F =1. In the worst case, when the states at the 
channel output are maximally mixed states, F=0.5. 
 

4. SUMMARY 
 
We started by splitting the density matrix ρ in a mixture of a 
maximally mixed state and a pure state. This mixture is 
controlled by the degree of purity, gp, that shows how much 
pure is a quantum state. Then, we applied gp in quantum 
information theory, finding its relationship with the von 
Neumann entropy, and expressing the quantum Kolmogorov 
distance, classical mutual information and fidelity, as 
functions of the degree of purity. 
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