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ABSTRACT
This paper presents a procedure for the generation of an or-
thogonal set of functions, starting from a set of linearly in-
dependent non-orthogonal functions. The main characteris-
tic of the algorithm is to produce the minimal perturbation
on the original set.

Keywords: Orthonormal functions, Gram-Schmidt orthonor-
malization; Signal representation; Orthonormal bases.

1. INTRODUCTION

Bases for signal representation are perhaps the most impor-
tant tool for signal processing and analysis[1], [2], [3], [9],
[6l, [7], [8], [9], [10]. The action of decomposing a signal
through a base formed by a set of suitable signalsis present
in amost al procedures currently adopted to convey or to
extract information. The orthogona bases are massively
employed mainly because they allow a simple decoupled
computation of the coefficients of asignal representation.

Thewell known Gram-Schmidt procedure generates or-
thogonal functions starting from a set of linearly indepen-
dent functions. However, the procedure leads to new func-
tions whose shapes can be very different from the original
ones.

A new procedureto orthogonalize a set of linearly inde-
pendent functionsis proposed in this paper. Itsmain charac-
teristic is to preserve, subject to some criterion, the shapes
of the original base components. A comparison with the
classical Gram-Schmidt procedureis provided.

2. GRAM-SCHMIDT

Consider the set NV of linearly independent real functions
fa(t),n = 1,..., N with finite energy. A signal y(¢) not
necessarily belonging to the space Sy spanned by the set A
can be approximately expressed as

N
y(t) 2> an folt) @

The coefficients o, that minimizethe mean square error

@ay=["
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N

y(t) — Z anfn(t)] dt 2

are given by
a =R (fy(t)) ©)

wherea € RN and f = [f1(t) ... fn(t)]" are column vec-
tors. The correlation matrix (R = f f') is composed by the
elements

+oo
TRl = <fk(t)fl(t)> = [ fk(t)fl(t)dt for k,l = 1, . ,N
4

Note that the calculation of each coefficient «,, Smul-
taneously involves all the f,,(¢) functions. If the set A/ is
composed by orthogonal functionsthen R isadiagona ma-
trix and each coefficient «,, can be calculated only from the
corresponding f,(¢) function and the signal y(t).

To orthogonalize the set A/, consider the non-singular
matrix @ € RV*N which produces the linear transforma-
tion

92 Qf (5)

Note that the vector of functions g produces a new base that
spans the same space Sy that the one generated by f. The
orthonormalization requiresthat (gg') = | yielding

QRQ' =1 (6)

Equation (6) can be viewed as a system of quadratic
equations with N2 unknown variables and N(N + 1)/2
congtraints, since by construction R is a symmetric posi-
tive definite matrix [5]. As aconsequence, there are several
different ways to generate the orthonormal base g from the
given set of linearly independent functions f.



The symmetry and the positive definiteness characteris-
tics of R allow to obtain a solution of equation (6) by ap-
plying the Cholesky factorization to R, producing a lower
triangular matrix L suchthat R = LL' [4], yielding

QRQ' = (QL)(QL) =1 ()

The Cholesky factorization induces Q = L~' as asolution
of (6), which is the classical Gram-Schmidt orthonormal-
ization.

To illustrate, consider the set of five linearly indepen-
dent triangular functions f,,(t) = f(t—nT)forn=1,... .5
where

(t/T)+1for —T <t <0
f(t):{ —(@#/T)+1for0<t<T (8)

0 elsewhere

withT = 1.5 asillustrated in the figure 1.
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Figure 1: Triangular pulse that approximates the sampling
function Sa(nt/T).

The correlation matrix R (which is a tri-diagonal ma-
trix) and the corresponding linear transformation ) = L}
for this example are given by

1 02 0 0 0
025 1 025 0 0
R=| 0 025 1 025 0 )
0 0 025 1 025
0 0 0 02 1
+1.000 0 0 0 0
—0.258 +1.033 0 0 0
Q=| +0069 —0276 +1.035 0 0
—0.019 +0.074 —0.277 +1.035 0
+0.005 —0.019 +0.074 —0.277 +1.035
(10)

Figure 2 shows the orthonormalized functions g. As it
iswell known, the classical Gram-Schmidt orthonormaliza-
tion procedureis such that g, (t) = f1 () but g, (t) # fn(t)
forn = 2,..., N and the changes on the origina shapes
are more important asn increases.

Figure 2: Functions g produced by the Gram-Schmidt or-
thonormalization procedure applied on the triangular func-
tions f.

3. CONSTRAINED ORTHOGONALIZATION

The aim of the procedure proposed hereis, of course, to or-
thogonalize the original set but obtaining a set of functions
that best preserves the shapes of the original functions. For
that, a quadratic criterion is used.

The problem becomes

N +00
I _ 2
9= Qf;rgrznonrthogonal nz:l/_oo [gn(t) — fn(2)]" dt

(11)

Let thevectors fa and ga bethefunctions sampled with
aperiod A, yielding the approximative numerical computa-
tion for the correlation matrix R:

R= fafaA (12)
Therefore, problem (11) can be written as
Tr[(9a — fa)(ga — fa)'1A

(13)

min

ga = Qfa; Agagh = |

min

Tr[QRQ' + R— QR — RQ']
QRQ' =1

(14)



where Tr(-) stands for trace of the square matrix argument,
thatis, Tr(M) = 3.7, my; for M € R ",
The solution to problem (14) also solves

max  Tr[2RQ)] (15
QRQ' =1
which involves the maximization of a linear cost function
subject to quadratic constraints. Since R is a positive defi-
nite matrix, this problem has only one solution, which can
be obtained using the Lagrange multiplier Y.
The Lagrangian function is given by

1(Q.,Y) =Tr2RQ +Y'(QRQ" — )] (16)
yielding the stationary conditions[11]
QRQ'=1 ; 2R+YQR+Y'QR=0 a7

Note that the constraint QRQ’ = | is symmetric implying
thatY’ =Y andY = —@Q ! which, appliedto QRQ' = |
leads to Y2 = R. Thus, the optimal solution of (15) is
Q = R705,

As R isareal symmetric positive definite matrix

Q=R =UA"U (18)

where U is a unitary matrix (i,e. U'U = |)and A isa
diagona matrix formed by the eigenvaluesof R [4].

Observe that the solution @) is a symmetric matrix. In-
deed, by imposing this condition on equation (6) and apply-
ing the Schur decomposition on R [4], one gets

R=UAU' = Q=UA"U'"2R" (19

Figure 3 shows the proposed constrained orthonormal-
ization applied to the triangular functions givenin (8). Ma
trix @ is given by

+1.026 —0.136 +0.027 —0.006 +0.001
—0.136 +1.053 —-0.142 +0.029 —-0.006
Q= +0.027 —-0.142 +1.054 —-0.142 +0.027
—0.006 +0.029 -0.142 +1.053 —0.136
+0.001 —0.006 +0.027 —0.136 +1.026

(20)

Note that the symmetry of matrix @ resultsin a small per-
turbation equally distributed in al the original functions.

4. ATWO-DIMENSIONAL EXAMPLE

A better geometric understanding of the method proposed
isillustrated through a simple example in a Cartesian plan.

Consider the matrix F' € F2*2 composed by two lin-
early independent row vectors and the corresponding corre-
lation matrix R given by

0 1 1 0707
F‘{o.m? 0.707} ’ R_{o.m? 1 }

(21)

Figure 3: Functions g produced by the constrained or-
thonormalization procedure applied on the triangular func-
tions f.

Thelinear transformationsthat produce the Gram-Schmidt
and the constrained orthonormalizations are given respec-
tively by

1 0 ) 1.307
-1 1.414 ’ —0.541
and the two resulting orthonormal sets g (i.e. unitary matri-

ces) are respectively

01 ) —-0.383 0.924
10 ' 0.924 0.383

—0.541 ] 22)

1.307

(23)

Figure 4 shows that the resulting vectors in the constrained
orthogonalization are equally perturbed with respect to the
original vectorswhereasin the Gram-Schmidt procedurethe
first vector is preserved and the second oneis modified.

Constrained

Gram-Schmidt

Figure 4: Resulting vectors for the two dimensional exam-
ple.

5. CONCLUSION

A new procedureto orthogonalize a set of linearly indepen-
dent functions has been presented. The algorithm is similar



to the classical Gram-Schmidt one, but presents the addi-
tional feature of minimizing the total mean square differ-
ence between the original functions and the corresponding
orthogonal ones.
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