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Abstract— A new blind channel estimation approach is pre-
sented in this paper, based on the well known probability
density function estimation by Kullback-Leibler’s distance
minimization. Thanks to a probability approximation, the
resulting structure is surprisingly simple. Unfortunately, a
complete analytic study of such a structure is quite difficult
because of its nonlinear and recursive nature. Some approx-
imated analytic expressions are presented along with some
typical simulation results.
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I. INTRODUCTION

In the context of digital communication systems, con-
cerning blind channel estimation by using synchronously
sampled data, the a posteriori probability density function
(pdf) of the sampled observations can be modeled by a
parametric function, whose parameters are message and
noise pdf and channel model. In the case of a finite alpha-
bet modulation scheme, white Gaussian additive noise and
a finite impulse response linear channel, the joint pdf of the
sampled observations is in fact a mixture of Gaussians[2].

Then, assuming that the only available information is
the message pdf and the noise variance, it is theoretically
possible to (blindly) identify the channel model by classical
methods such as maximum likelihood or maximum a poste-
riori [3], which in fact is the same as estimating the mixture
of Gaussians with a parametric model. Nevertheless, it is
well known that the number of Gaussian kernels in such a
mixture grows exponentially with the channel memory and
message length.

Some strategies have been proposed to cope with this
drawback by splitting the entire set of observations into
blocks supposedly statistically independent (e.g., Partial
Likelihood [4], Split Data Likelihood [5], [6]).

As with the above strategies, the new algorithm pre-
sented in this paper also performs an adaptive estimation
of a probability density function by means of the sampled
observations. However, in contrast with them, we reduce
the computational burden by estimating emitted symbols
and feeding them back into the algorithm. This procedure
is somehow closer to the algorithms proposed by N. Se-
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shadri [7], but our final structure is much simpler, though
it has a surprisingly good performance.

Indeed, the parametric pdf estimation approach applied
leads us to a particular structure which, in spite of its ap-
parent simplicity, has a good performance concerning the
channel estimation task. Simulation results have shown
fast convergence even for channels having spectral near-
nulls, and fast but slightly biased estimations of channels
having spectral nulls. However, since this algorithm in-
volves past decisions, an analytic study of it seems to be
quite difficult to obtain. Anyway, we have found some
approximated analytic expressions which partially explain
some observed results.

In Section IT we present this simple channel estimator
along with a brief comment on its link to parametric pdf
estimation. In Section III we provide some approximate an-
alytic expressions concerning the stable points in the cost
function for 2-PSK and 4-QAM modulation schemes. Fi-
nally, in Section IV we present some simulation trials with
the 4-QAM modulation scheme. These trials were chosen
because they illustrate well typical results when the chan-
nel presents spectral near-nulls.

II. CHANNEL MODEL AND PDF ESTIMATION

In this paper, we consider a finite impulse response (FIR)
linear channel model, a digital information source, with
a(n) standing for a discrete and complex random variable
whose variance is o2, and a(n),...,a(0) being an i.i.d.
stream which carries digital data. Furthermore, digital
symbols are drawn with equal probability from a finite al-
phabet {as : 1 < s < S}. Similarly, let b(n) be an additive
and Gaussian noise with variance o7, and b(n),...,b(0)
an ii.d. set of variables. Finally, F(z) = Eﬁigl 2
is the z-transform of the channel impulse response. The
channel model is therefore an FIR filter with N taps.
We can alternatively represent this filter by the vector:
f=1[fo fi -~ f~v-1]T . The filter output is a random
variable z(n), which models observations synchronized to
the symbol rate.

In this section, we show that the pdf of (k) (0 < k < n),
given the past observations, is a mixture of Gaussians, pa-
rameterized both by f and o7 . After that, we show how the
application of an equalizer (any equalizer) makes possible
an approximation of such a mixture by just one Gaussian
at a time. As a consequence, it provides a drastic simplifi-
cation of the channel estimation algorithm. This algorithm
being, in fact, an adaptive matching of the conditional pdf



of z(k) with another suitable multimodal function, param-
eterized by estimates of £ and o? (ie. , f and 67 , respec-

tively).

Let 1(0) = p(z(0)) be the pdf of z(0) and I(k) =
p(x(k)|z(k — 1), z(0)) the conditional pdf of z(k).
Therefore

n
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On the other hand, given an integer N(> N) and a discrete
random vector a(n) = [a(n) --- a(n — N + 1)]7, then (k)
can be expanded to:

p(z(n),...,z(0))

= a;)Pr(a(k) = aj|lz(k - 1),...,x
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where S is the number of symbols used in the modulation
scheme. For instance, our simulations up to now were based
on 2-PSK (S = 2) and 4-QAM (S = 4) schemes.

Since the noise is Gaussian, it is easy to show that

(a(k) = a;|lz(k —1),...,x
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Clearly, the number of terms in the summation exponen-
tially grows with N and S, and it could be considered as
a serious drawback concerning practical utilization of such
an approach.

In order to get round this obstacle, we apply the fol-
lowing strategy: given an equalizer (whichever it may be)
providing symbol estimates modeled by the random vari-
able a(n — d), where d is a suitable decision delay; we use
a vector of such estimates to reduce the number of terms
in Eq. 2 to only one term. It is feasible by means of the
(arbitrary) approximation

Ap: Pr(a(n —d) = a;|z(n —d),...,z(0))
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0 otherwise
where a(n — d) =
random vector of past estimates provided by the equalizer!.
Consequently, applying Ao in (2), we have

N-1 2
exp (——z (n—d)~ ¥ aln— i), )
9= Nz

INote that Ag is somehow related to the clustering procedure ap-
plied in the classical K-means algorithm [8]

I(n—

It is worth noting that the more effective the equalizer,
the more Ay is likely.

Then, we are able to formulate a parametric estimator
for I(n — d) as follows:

I(n—d;f,6%) =
1 2)
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where f and 67 are respectively the channel and noise vari-
ance estimates. As a consequence of (1), we also have:
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A suitable cost function to compare pdfs is the Kullback-
Leibler (KL) divergence [9]:

p(z(n —d),...,z(0)
n—d R
I1 i(k; E,62)
k=0

J = Eyn_q),...e(0) § In

The gradient of J w. r. t. f is then given by

=g { s

where f* is the complex conjugate of f. Note that this re-
sult can be directly obtained from Ay and the well known
equivalence between likelihood maximization and squared-
error minimization for Gaussian process with uniform pa-
rameters priors.

A stochastic minimization of .J is probably the simplest
way to adapt f. Then, a simple channel estimation algo-
rithm is:

F(n —1) +ay (a:(n —d) —a(n —d)TEn - 1)) a(n — d)*

where o is a suitable adaptation step.

Finally, we need to choose an equalizer in order to pro-
vide the symbol estimates. Clearly, more powerful struc-
tures such as Bayesian nonlinear devices should reduce the
decision error rate [10], and thus to render Ay more likely.
Nevertheless, in order to keep our structure as simple as
possible, we are going to use the Wiener linear transver-
sal equalizer (LTE). Besides, in most realistic cases, where
the Wiener equalizer provides a relatively low symbol error
rate, the approximation Aq still holds.

The final estimator structure is shown in Fig. 1, where
both R, (f) and p(f) are analytically computed from f.
In other words, the equalizer coefficients are analytically
calculated for every new estimate f. Furthermore, the esti-
mated noise variance, which is applied to compute f{w(f' ),
must be available. However, we have observed that the
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Fig. 1.

Channel coefficients estimator

algorithm is almost insensitive even to great deviations be-
tween &f and Uf. Therefore, in our simulations we have
used a moderate but arbitrarily chosen 67 just to ensure
that R, (f) is a well conditioned matrix, whatever the value
of f. For instance, we may set 67 ~ 0.05.

III. CONVERGENCE STUDY

The resulting structure is surprisingly simple and though
it is clear that it can work when past decisions are correct,
on the other hand, even a superficial glance at Fig. 1 gives
rise to the following question: how does the algorithm work
when f is randomly initialized ?

Strictly speaking, this question could be answered ana-
lytically but, given the joint effect of recursivity and non-
linearity present in the algorithm, an analytic approach
seems to be quite difficult. So, our strategy to get some
feeling about this question was two-fold: first we have done
hundreds of simulation trials, with different channels and
noise variances (we also have done simulations with colored
noise), and finally an approximate analytic investigation
was done in order to roughly explain the most representa-
tive results.

Here we briefly present the main findings of this investi-
gation:

a. Every N-dimensional vector

o = exp(éV=D)[0 <+ 0 fo - fy-1 0 - 0]

corresponds to a minimum of the cost function .J if
ped{...,—2r,—m,m2m,...} for 2-PSK schemes, and
pe{...,—m—m/2,7/2,m,...} for 4-QAM schemes.
In fact, these points will be referred to in this text as
desired solutions to the blind estimation task.

b. For channels having spectral nulls, the stable equilib-
rium point corresponding to solutions fy are slightly
biased to f, = fy + Afy. It is possible to show that
this bias depends on the modulation scheme and the
equalizer performance. For instance, if the symbol
error rate (SER) at the Wiener equalizer output is
SER(f,), then Afy = —2SER(f,)fy in the 2-PSK case
and Afy = — (4/3) SER(f})f, in the 4-QAM case.

c. In both the above mentioned cases, the cost function
roughly lies in max (UZASER(f'b)f})Hf'b) < J(f) <

O'g + 4SER(fb)fg{fb

d. Apart from the desired cost function minima, spuri-
ous local minima were also found but only in simula-
tions with 2-PSK. These minima were related to a par-
ticular class of channel estimates given by: Fj,(z) =
F(z) - P(z) with the coefficients of P(z) having the
property: > p? > > piPitm, Ym # 0. In other words,

P(z) is an all-pass filter.

IV. SIMULATION ILLUSTRATIONS

The following simulation trials were done with the same
channel found in reference [1]. This channel presents two
spectral near nulls, causing difficulties in the estimation
task. In [1] the channel estimation was used to compen-
sate for intersymbol interference (ISI) by means of a linear
transversal equalizer (LTE). As a result, an ISI reduction
was obtained by using a nonlinear least squares estima-
tion algorithm, based on a high-order statistics (HOS) ap-
proach.

In contrast to [1], where an ISI reduction of —17dB was
obtained by using 20,000 observed samples, we have ob-
tained the same ISI reduction with fewer than 5,000 sam-
ples (see illustration in Fig. 2).

Further results are presented in the sequel:

o Trial without noise: Fig. 2 shows a typical simulation
trial where f converges toward f,. In these cases, the
estimator variance asymptotically converges to zero.
Note that simulations were done with random initial-
ization of f in order to highlight the self-adaptation
capability of the algorithm. Nevertheless, faster con-
vergence has been obtained by initializing f with 1 in
the middle vector position, and zeros elsewhere.

o Trial with additive white Gaussian noise: Fig. 3 shows
a typical simulation trial with additive white Gaussian
noise.

« Trial with additive colored noise: In order to illustrate

a case where the noise is no longer white Gaussian,
we put together five independent sources, as shown in
Fig. 4.
Strictly speaking, our formulation for ¢; (z(k)), in
Eq.(3), is no longer valid. However, in almost all tri-
als where the channel corresponding to the user with
strongest energy (user number 0) had no deep spectral
fading, we had convergence to fo in fewer than 5000
symbols.

V. CONCLUSIONS

We have presented a very simple structure which works
surprisingly well, providing fast channel estimation even for
arbitrarily chosen initial values of the channel estimated.
Though it is not a straightforward matter explaining the
transient behavior of such a “nonlinear feedback” struc-
ture, we have observed in the majority of the simulation
trials a fast convergence toward the desired channel esti-
mated. Moreover, no local minima were found in simula-
tions with 4-QAM. On the other hand, the few undesirable
local minima found in simulations with 2-PSK match the
case characterized in Section III. Furthermore, we also ob-
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Fig. 2. A single trial with 4-QAM modulation scheme, where F(z) =
(2-0.45)+(1.54+1.85)z 7t +1272+(1.2—1.3§) 23 +(0.8+1.65) 24,
21 taps in the LTE, N =5, N =11, SNR — oo and ay = 0.005.

served that the stronger the noise, the rarer the local min-
ima incidence, which could suggest some ideas concerning
strategies to avoid such a problem.

Concerning the estimation bias referred to in Section III,
observed when the channel had spectral nulls, since this
bias is related to the SER, it is possible to reduce it by
replacing the Wiener LTE by, for example, a nonlinear
equalizer with better performance. Specifically, we per-
formed some trials with the suboptimal Bayesian equalizer
proposed in [10] and the estimate deviation was reduced,
according to the approximate formula presented in Section
ITI, Ttem b, which associates such a deviation to SER.
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