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ABSTRACT

Motivated by forthcoming of new materials that supports
multi-amplitude data storage, McLaughlin and Luo [1]
present some results on the capacity of noiseless� -ary
runlength-limited codes. In this paper we tackle with a M-
ary noisy channel which inputs are M-ary runlength-limited
sequences. We obtain a lower bound on the capacity of that
a channel and calculate the power spectral density of its in-
put sequences. The results presented here can be viewed as
a generalization of that given in [2] for the binary case.

1. INTRODUCTION

Magnetic and optical recording systems for M-level recor-
ding are now available [1]. The material employed in that
systems keep linearity of the channel, but M-ary data se-
quences should obey runlength-limited (RLL) or��� �� con-
straints. Shannon capacity of a noiseless M��� �� code is
given by base-2 logarithm of the largest real root of the
equation [3]:

���� � ���� � �� � �������� �� � � � � (1)

In this paper is presented a lower bound on the capacity of a
noisy channel whose input is by M-ary RLL constrained se-
quences. The noisy channel is modeled as a generalization
of the binary symmetric channel (BSC) shown in Figure 1.
For the sake of simplicity we assume constant crossover
probabilities, despite of its simplicity, the channel model
adopted captures the mechanism of errors generation in re-
covering���� �� recorded information.

The analysis of power spectrum density (PSD) of the
sequences used in the���� �� codes can provides informa-
tion as DC level and other spectral desired characteristics.
In this work we obtain the PSD of���� �� codes using a
technique proposed by Bilardi and Pierobon in [4].

A � -ary ��� �� code is a set of sequences of symbols
from an alphabet� � ��� �� �� ����� � �� where at least�
and at most� zeroes can be accepted between nonzero sym-
bols. Often we represent RLL���� �� constraint by means

a finite-state sequential machine (FSSM) shown in Fig. 2.
Any RLL ���� �� sequence corresponds to a sequence of
labels through paths off the FSSM. There are�� � �� states
represented by random variable� � ��� �� � � � � �� � We de-
note by� �	� 	� �� � ��� 
�� � 	 � �� � � � � ��� the prob-
ability of transition from the state	 to the state	 � �� The
probability of transition from state	� 	 � �� � � �� � � � � �
to state� is given by

� �	� �� �

�

� � �
� (2)

The transition probability matrix corresponding to the Markov
chain of the FSSM shown in Figure 3 is given by:
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where probabilities
�� 	 � �� � � � � � sum up transition prob-
abilities of arcs labeled by nonzero symbols.

2. PROBABILITY FOR � -ARY SEQUENCES

In [2] the binary��� �� sequences was analyzed using a divi-
sion in phrases. In that case given a stream of bits, the begin
of a phrase is the first zero symbol and his end it is marked
at the first 1 appear in the sequence, the phrase length is
the number of bits. It was created a random variable� � re-
lated with the phrases lengths. In that work the probability
distribution of� , was given by

� �� � 	� � ���� � 	 � �� �� ���� � � � (4)

where
 is obtained from equation 1 with� � �.



Using the same form to analyze a���� �� sequence,
considering the end of a phrase when the first symbol dif-
ferent of zero appear, we obtain the distribution of� the
random variable of the phrases lengths in the� -ary case as

� �� � 	� �
������ �����������������

�	��� �
����� �������������

� (5)

where�	 ��� is the entropy of the variable� for the binary
sequence with the same� and� obtained using Equation 4.

3. LOWER BOUND ON THE CAPACITY OF THE
� � ARY ��� �� CROSSOVER CHANNEL

Let ��� be the stationary Markovian chain given by the
sequence of states of the FSSM shown in Figure 3. Let
��� be the stationary Markovian process formed by sym-
bols � � � ���� ��� � where�� and�� are consecutive
states from the process�� The noisy channel we assume is
shown in Figure 1. The channel has� -ary input� and
its output�, is equal to the input with probability� � ��
With probability 


� � on the other hand,� equals a neighbor
symbol. We note that if� � � the model is equivalent to
well-known BSC channel.
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Figure 1: Noisy Channel with Crossover Probability
� �
with � -ary alphabet. The input� is the stationary Marko-
vian process formed by symbols� � � ���� ��� � where
�� and�� are consecutive states of FSSM shown in Fig-
ure 3.

. . . d-110 d . . . d+1 k
0 0 0 0 0

1 M-1... 1 M-1 1 ... M-1...

Figure 2: State machine for���� �� sequences.

In this section we derive a lower bound to the capacity of
the� -ary noisy crossover channel of the Figure 1. In order
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Figure 3: State machine for transition probability.

to perform this derivation we use the following lemma due
to Wolf et all in [2]:

Lemma 1 The capacity of a memoryless channel under the
constraint that the input is stationary and Markovian is lower-
bounded by


 � �	

	 �������

� ��������� (6)

where�� and�� are consecutive states of Markovian pro-
cess that produces the sequence���, � ���� ��� the proba-
bility of step��� �� and� � � is the output affected by the
noise.

The mutual information of Equation 6 can be written as

����� ����� � �������� �������������� ������
(7)

From the stationary probabilities the states� �� � �
,
� � �� � � � � �� transition probability matrix given by Eq. 3
and Figure 3 we are able to derive the entropies of Eq. 7 (see
Appendix). Replacing the entropy values calculated in the
Appendix in Eq 7 (after some algebrism) we obtain:
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The stationary probability of�th state is given by

� �� � �
 � � �� � �
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�� � (9)

where�� � ��
� and� �� � �
 � ���
,�
 is the average
length of the sequences [2].

We note that for an erasure channel model the lower
bound given in [5] does not depend on� , the input al-
phabet size. This in contrast with the result obtained here
for crossover channel model.



The lower bound on the capacity is calculated using
the Equations 8 and 9. The supreme of the Equation 6
was obtained by a search in the input probability space
 � ,
� � �� ���. We observe that for� � � the same values of
capacity given in Wolf [2] were obtained with the general-
ized formulas 8 and 9, as was expected.

For� � � and� � �, in the Figure 4 shows the capacity
for some values of� . The same was made for� � � and
� � � and the results is showed in the Figure 5.
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Figure 4: Capacity for� � � and� � � a)� � �, b)� �
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It can be observed the effect of the restriction in the ca-
pacity, since when� � �, the channel do not have crossing,
the capacity was a value lower than
 � ������.

It can be verified a increase in the capacity at last the
probability of crossing be great.

In the next section it is presented some results of power
spectrum density of the M-ary sequences.

4. POWER SPECTRUM DENSITY OF ������
SEQUENCES.

In order to apply the method given in [4], we first split the
zero state obtaining the equivalent FSSM displayed in Fig-
ure 6. The correspondent transition probability matrix is
given by Eq. 10:
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Figure 6: State machine after state splitting.

We calculate the PSD for two recording schemes. First
we assume a NRZI scheme shown in Figures 7(binary case)
and 8(� -ary case.) Let�� be the�-th symbol of the���� ��
sequence, in the NRZI recording scheme, if���� � ��� the
output recording level���� is hold. Otherwise, it is updated
with ���� � ������ inverting the signal of the previous
level (see Figure 8.) The second recording scheme uses the
rule���� � �� � �� ���� �� to define the output level.

In [2] was proposed a NRZI coding to be applying in
sequences��� ��. In that case the result sequence has values
+1 e -1 and, if the input is the symbol 0 the output maintain
its value, and if an input symbol is 1 the output change its
signal. For example observe the Figure 7, in this case the
initial state is +1 and the level only change when the input
symbol is 1.

(d,k)  sequence          0    0    1    0    0    0    1    0    0    1    0    1

NRZI                            +1 +1 +1  -1 -1  -1 -1 +1 +1  +1 -1 -1

Figure 7: NRZI for the binary case.



M(d,k) sequence           0    0    2    0    0    2    0    1    0    1    0    3

NRZI                            +1 +1 +1  -2 -2  -2 +2 +2 -1  -1 +1 +1 -3

Figure 8: NRZI for the� -ary case.

The power spectral density results for��� �� � ��� ��
and some values of� using the proposed NRZI are pre-
sented in the Figure 9. The curves have the same format but
with different levels because with the grow of� there are
more levels and more power is need.
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Figure 9: PSD for��� �� � ��� �� and some values of� .

In [1] another NRZI code was proposed. In this case the
���� �� sequence is passed throw a pre-coder that generates
the output symbol�� � ���� � ��������.

For ��� �� � ��� �� and some values of� , in the Fig-
ure 10 is shown the PSD of the sequences generated by the
second scheme. In this case is observed the presence of DC
level and their grow with the increase of� .

5. CONCLUSIONS

We have obtained a lower bound on the capacity for a noisy
channel with M-ary RLL constrained. The new lower bound
generalizes that proposed by Wolf et all [2] for the BSC
channel with binary RLL sequences as its input. It was ob-
served that the capacity lower bound for� � � holds for
relatively high noise level (high crossover probability).

For the noiseless M-ary RLL channel we have obtained
the probability distribution of the length, L, of phrases of M-
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Figure 10: NRZI mod M scheme.

ary symbols, defined similarly to the binary RLL sequences.
This is another generalization of a result given in Wolf [2].
Power spectral densities for RLL M-ary sequences are pre-
sented. The results are displayed for two recording schemes,
NRZI and NRZI modulo M.

A. CALCULATION OF THE MUTUAL
INFORMATION � ����� � ���

In this Appendix we derive the mutual information of Eq. 7
[6], by means calculating each of entropies���� � ���,
��� � ��� and,����� � � ���� In the following we denote

���� � �� ����� ��� �� ������ ���

the binary entropy.

From Figure 3 we obtain:
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From Figures 1 and 3 we take, after some reasoning,
the probability distributions used to obtain the last two en-
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and
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