Filtros Discriminativos para a Detecção de Gabaritos de Imagem

Alexandre P. Mendonça Departamento de Engenharia Elétrica Instituto Militar de Engenharia & PEE/COPPE/UFRJ Rio de Janeiro, RJ, Brazil alexmend@aquarius.ime.eb.br

RESUMO: A detecção de gabaritos da imagem é um passo intermediário importante para um algoritmo de visão computacional. Geralmente, a idéia básica deste tipo de algoritmo é receber uma imagem como entrada e gerar, como saída, um conjunto de linhas, bordas, quinas ou outras formas geométricas bem conhecidas. Recentemente, Ben-Arie e Rao propuseram um filtro linear que, dado um gabarito de sinal, maximiza a concentração de energia numa das amostras do sinal de saída do filtro. Neste artigo, nós propomos uma generalização deste método, formulando o casamento de gabaritos como um problema de otimização envolvendo múltiplas variáveis. Propomos e investigamos o uso de três funções objetivos. Os resultados das simulações mostram que o método trabalha muito bem com imagens reais.

1. INTRODUÇÃO

O problema do casamento de gabaritos tem sido encarado com as mais diversas abordagens, como, por exemplo, nos trabalhos [1] e [2]. Neles, foram construídos detectores de quinas baseados nas estatísticas locais da imagem. Já Ben-Arie e sua equipe têm trabalhado em um novo tipo de detectores, chamados por eles de EXM, iniciais de "Expansion Matching" [3-7]. Estes detectores são baseados em decomposição de um sinal numa base especial de funções para um determinado gabarito. Nestes trabalhos, um gabarito é detectado se uma determinada função objetivo, calculada sobre as amostras da saída do filtro, possuir um valor superior a um limiar. O sucesso deste método vem do fato de que ele equivale a maximizar a concentração de energia do sinal de saída em uma única amostra. Detalhes podem ser encontrados em [3-7]. A formulação usada refere-se a gabaritos de sinais em uma dimensão, ou seja, para seu uso em aplicações envolvendo imagens, é necessário algum procedimento de redução de posto no sinal da imagem.

Neste artigo, propomos uma generalização bidimensional para o método em [3]. Na seção 2, descrevemos uma formulação matemática em duas dimensões, incluindo uma função objetivo criada após Eduardo A. B. da Silva Programa de Engenharia Elétrica COPPE/DEL/UFRJ Rio de Janeiro, RJ, Brazil Cx. Postal 68504, CEP 21945-970 eduardo@lps.ufrj.br

expandir a definição do caso em uma dimensão [3]. Nas seções 3 e 4, propomos outras duas funções objetivos para serem usadas na otimização dos filtros discriminativos. Na seção 5, testamos o método proposto em um sistema de detecção de gabaritos. Na seção 6, mostramos os resultados experimentais e, na seção 7, apresentamos as conclusões

2. FILTROS DISCRIMINATIVOS EM DUAS DIMENSÕES

Quando se usam filtros discriminativos para a detecção de gabaritos, geralmente se deseja concentrar a energia do sinal de saída em uma de suas amostras. A relação sinalruído discriminativa (DSNR), definida em [3], é uma medida que leva em conta não apenas a energia em uma amostra, mas também considera a energia em relação às outras amostras. Para os filtros discriminativos em duas dimensões, definimos uma função objetivo discriminativa (DSNR₂) como sendo:

DSNR₂ =
$$c_{i,j^2}$$
 (1)
($\sum_{m} \sum_{n} c_{m,n^2} - c_{i,j^2}$

Os coeficientes $c_{m,n}$ são obtidos após uma convolução bidimensional entre a janela de entrada do sinal de imagem $u_{m,n}$ e um operador linear Θ , com resposta ao impulso $\theta_{m,n}$, que vamos calcular para um determinado gabarito a ser casado. O coeficiente $c_{i,j}$ é aquele nonde se deseja concentrar a energia do sinal de saída do filtro.

Em nossa abordagem, não fazemos qualquer restrição quanto às dimensões tanto da janela de entrada, quanto do operador Θ . Seja U uma janela $M_1xN_1 \in \Theta$ um filtro M_2xN_2 . Portanto, a imagem resultante após a convolução entre U e Θ tem dimensões $M_1+M_2-1xN_1+N_2-1$ e pode ser expressa como:

$$c_{m,n} = \sum_{m'} \sum_{n'} u_{m-m',n-n'} \theta_{m',n'}$$
 (2)

É fácil ver que a maximização de $DSNR_2$ (vide equação 1) é equivalente à minimização da seguinte expressão:

$$f(\Theta) = \frac{\sum_{m} \sum_{n} c_{m,n}^{2}}{c_{i,j}^{2}}$$
(3)

Da equação 2, a função $f(\Theta)$ a ser minimizada torna-se:

$$f(\Theta) = \frac{\sum_{m} \sum_{n} (\sum_{m'} \sum_{n'} u_{m-m',n-n'} \theta_{m',n'})^{2}}{(\sum_{m'} \sum_{n'} u_{i-m',j-n'} \theta_{m',n'})^{2}}$$
(4)

 $f(\Theta)$ é mínimo quando seu gradiente for igual a 0, ou seja:

$$\nabla f(\Theta)_{r,s} = \frac{\partial f(\Theta)}{\partial \theta_{r,s}} = 0 \qquad r=1,...,M_2 \qquad (5)$$

A condição acima recai num sistema não linear de M_2N_2 equações. Para se obter uma solução numérica, usamos um método baseado em gradientes. A expressão para $\nabla f(\Theta)$ é

$$\nabla f(\Theta)_{\mathbf{r},\mathbf{s}} = 2 \left\{ c_{\mathbf{i},\mathbf{j}} \sum_{m} \sum_{n} u_{\mathbf{m}-\mathbf{r},\mathbf{n}-\mathbf{s}} c_{\mathbf{m},\mathbf{n}} - u_{\mathbf{i}-\mathbf{r},\mathbf{j}-\mathbf{s}} \sum_{m} \sum_{n} c_{\mathbf{m},\mathbf{n}}^{2} \right\} / c_{\mathbf{i},\mathbf{j}}^{3} (6)$$

Uma boa estimativa inicial para o filtro é importante para este método baseado em gradiente. Sugerimos o uso da parte real da transformada inversa de Fourier do sinal obtido com o quociente, no domínio da freqüência, entre a resposta em freqüência desejada (DSNR₂ infinito, ou seja, $c_{m,n} = \delta_{i-m,j-n}$) e a transformada de Fourier de U. Calculamos o desempenho usando quinas em janelas 7x7 como gabaritos (vide figura 1). O filtro operador Θ também foi escolhido com a dimesão 7x7 e as coordenadas da amostra onde se deve concentrar a energia do sinal de saída, ou seja, (i,j) nas equações (3), (4) e (6), foram escolhidas na amostra central do sinal de saída.

Figura 1: Coeficientes $c_{m,n}$ obtidos após uma convolução linear entre o gabarito proposto e seu respectivo Θ calculado.

3. ABORDAGEM ALTERNATIVA

Com a formulação da seção 2, encontra-se o Θ que maximiza a DSNR₂ para um dado gabarito. Contudo, ela não evita que um gabarito diferente forneça uma DSNR₂ maior quando filtrado com o Θ , o que pode ocasionar falsas detecções, como pode ser observado nos resultados da seção 6.

Um caminho possível para a solução deste problema é considerar a $DSNR_2$ como uma função de Θ e de U e procurar por um Θ que maximize a $DSNR_2$ quando U variar. Matematicamente, isto equivale a resolver:

$$\partial f(U,\Theta) / \partial u_{r,s} = 0$$
 r=1,...,M₁; s=1,...,N₁ (7)

Como o sistema de equações acima é de difícil solução analítica, criamos uma função objetivo, que chamamos de **potencial de discriminação** - $g(\Theta)$, que é igual à soma dos quadrados dos termos da equação 7, ou seja:

$$g(\Theta) = \sum_{r} \sum_{s} (\partial f(U,\Theta) / \partial u_{r,s})^{2} =$$

$$\sum_{r} \sum_{s} \left\{ c_{i,j} \left\{ \sum_{m} \sum_{n} \theta_{m-r,n-s} c_{m,n} \right\} \right.$$

$$\left. - \theta_{i-r,j-s} \left\{ \sum_{m} \sum_{n} c_{m,n}^{2} \right\} \right\}^{2} (8)$$

Minimizar $g(\Theta)$ na equação (8) é equivalente e resolver o sistema da equação 7.

A equação (8) foi resolvida numericamente para os gabaritos apresentados na seção 2. A solução inicial foi o filtro gerado pelo método da seção 2. Os resultados obtidos estão apresentados na tabela 1. A aplicação dos filtros obtidos em imagens reais está mostrada na seção 6. Como será visto na seção 6, muitas falsas detecções aconteceram, mais até do que nas simulações utilizando o método da seção 2.

Gabarito	DSNR ₂	g(Θ)
quina de 90 ⁰	0,1851	15,55
quina de 45 ⁰	0,3721	3,97
quina de 135 ⁰	0,0953	31,48

Tabela 1: DSNR ₂ e	$g(\Theta)$ obtidos
com a abordagem	alternativa.

4. ABORDAGEM MISTA

Como mostrado nas simulações (vide seção 6), a abordagem da seção 3 não oferece o melhor desempenho em um sistema de detecção de gabaritos. Isto indica que um valor alto de DSNR₂ também é importante. As duas abordagens anteriores parecem ser conflitantes porque elas foram desenvolvidas a partir de dois indicadores diferentes: as funções $f(\Theta) e g(\Theta)$. Um compromisso entre as duas deve então ser usado. Assim, definimos uma terceira função objetivo, chamada de **função de detecção** -DF(Θ), que combina $f(\Theta)$ com $g(\Theta)$:

$$DF(\Theta) = (1 - K) (f(\Theta) - 1 - 1/Z)^{2} + K g(\Theta), \quad (9)$$

onde Z é um limitante superior para $DSNR_2$ e K é uma constante que pondera $f(\Theta)$ e $g(\Theta)$.

O treinamento com os gabaritos forneceu curvas interessantes. A figura 2 mostra alguns resultados para os 3 tipos de quinas. A solução inicial usada foi a mesma da seção 2.

A figura 3 mostra o operador e o sinal de saída gerados para quinas de 135^{0} .

5. MÉTODO PRÁTICO PARA A DETECÇÃO DE GABARITOS

A aplicação natural para o algoritmo proposto é a detecção de padrões bidimensionais de imagem. Como mostrado na figura 5, a idéia básica é calcular Θ para um determinado gabarito. Então, este operador é usado para filtrar uma imagem que é gerada após uma transformação apropriada de uma janela da imagem original. A janela de saída que fornecer um valor de DSNR₂ superior a um limiar é

considerada morfologicamente casada com o gabarito original (aquele que gerou Θ).

Com o objetivo de não necessitar de computar diferentes Θ para cada gabarito (um para cada rotação de U), o que aumentaria bastante o número de filtros a serem usados, é realizada uma pré-rotação da janela que contém o sinal de imagem. Fazemos esta rotação para alinharmos a janela da imagem com a janela utilizada no cálculo de Θ . O bloco "rotação adequada", da figura 4, representa esta etapa. Mais especificamente, esta rotação é feita da seguinte maneira:

- escolhemos o gabarito (fig.5.1);
- calculamos o centro do gabarito escolhido (fig.5.2);
- tomamos a janela da imagem a ser casada (fig.5.3);
- calculamos o centro da janela da imagem (fig.5.4);
- calculamos o ângulo **α**, tomando os dois centros e usando o pixel central como origem (fig.5.5);
- realizamos a rotação da janela de **α**, de forma a tentar sobrepor a janela por cima do gabarito (fig.5.6).

Figura 2: Compromisso entre DSNR₂ e g(Θ), com Z=1, para quinas de (a) 90⁰ (K=0.85), (b) 90⁰ (K=0.95), (c) 45⁰ e (d) 135⁰.

Figura 3: (a,b) C e Θ para a quina de 135⁰ com K=0.85 e K=0.95 (c,d).

Figure 4: Diagrama em blocos simplificado para um detector de padrões de imagem.

Figura 5: Seqüência para a rotação adequada.

Note que, para o cálculo do novo pixel de coordenadas (i , j) depois da rotação (fig. 5.6), basta copiar o pixel de coordenadas (i cos α + j sen α , j cos α - i sen α).

Um problema possível deste método aparece quando tomamos uma janela igual ao complemento do gabarito (fig. 6). Se aplicarmos o algoritmo da fig. 5, a janela deveria casar-se com o gabarito, pois o cálculo de DSNR₂ é invariante à multiplicação por uma constante ("janela" = -1 x "gabarito"). Contudo, na presente implementação, seria feita uma rotação imprópria de 180⁰, o que ocasionaria um não casamento. Resolvemos este problema ao adicionar 180⁰ a α se, após a eliminação do nível DC da janela, o número de pixels com valores negativos.

Figura 6: Janela igual ao complemento do gabarito.

6. RESULTADOS DE SIMULAÇÕES

Para verificar o desempenho do sistema de detecção proposto, usamos os gabaritos da figura 1 e os filtros obtidos usando as três funções objetivos apresentadas na

seção 2 (método A), na seção 3 (método B) e na seção 4 (método C). A tabela 2 lista os parâmetros de processamento.

Gabarito	DSNR ₂ (método A)	DSNR ₂ (método B)		Limiar	Excursão Mínima (níveis de cinza)
quina de 90 ⁰	0,2850	0,1851		0,16	11,7
quina de 45 ⁰	0,4163	0,3721		0,09	11,7
quina de 135 ⁰	0,4493	0,0953		0,09	11,7
Gabarito	DSNR ₂ (método C)	K	Z	Limiar	Excursão Mínima (níveis de cinza)
quina de 90 ⁰	0,2470	0,95	1,0	0,16	11,7
quina de 45 ⁰	0,3611	0,95	1,0	0,09	11,7
quina de 135 ⁰	0,5196	0,85	1,0	0,09	11,7
quina de 135 ⁰	0,4219	0,95	1,0	0,09	11,7

Tabela 2: Tabela de parâmetros de processamento.

Observando a figura 7, podemos ver que o algoritmo é muito eficiente na detecção de gabaritos de quinas num ambiente com duas texturas apenas, como na chaminé da casa e nas fronteiras do céu. Para a quina de 90^{0} , os métodos B e C forneceram os mesmos resultados, cancelando uma falsa detecção do método A. Quanto às quinas de 45^{0} e de 135^{0} , notamos que o método A detectou um número elevado de quinas falsas. Para a quina de 45^{0} , ambos os métodos B e C trabalharam melhor do que o método A. Por outro lado, o método B multiplicou o número de quinas falsas de 135^{0} , enquanto que o método C trabalhou bem.

Podemos comparar nossos resultados com os obtidos por Nandy e Ben-Arie [4], mostrados na figura 7-(1). Em ambos os casos, os resultados foram muito satisfatórios. Em [4], as janelas passaram por transformadas KL antes da aplicação do método EXM original. Esta transformação reduziu a dimensão da imagem $(2 \rightarrow 1)$ de forma a poderse aplicar a formulação para uma dimensão.

7. CONCLUSÕES

Neste artigo, primeiramante definimos a extensão bidimensional de relação sinal-ruído discriminativa, definida em [3]. Propusemos então três funções objetivos para o projeto de filtros discriminativos. A primeira delas (método A) é baseada na maximização de DSNR₂. A segunda (método B) busca o filtro que forneça o maior valor de DSNR₂ para um dado gabarito. O método C usa, no cálculo da função objetivo, uma combinação dos métodos A e B. Uma aplicação em potencial para o filtro proposto é a detecção de padrões de imagem. Fizemos simulações com os filtros calculados em imagens reais e obtivemos melhores resultados discriminativos para o método C.

Os resultados foram bastante satisfatórios, tão bons quanto os outros apresentados na literatura. Contudo, o método proposto pode ser usado para detectar qualquer padrão bidimensional, mesmo para aqueles que não possam ser adequadamente transformados para o uso do EXM em uma dimensão [3-7].

8. REFERÊNCIAS

[1] Ji, Q. e Haralick, R.M., "Quantitative Evaluation of Edge Detectors Using the Minimum Kernel Variance Criterion", IEEE International Conference on Image Processing, 1999.

[2] Abdou, K.E. e Pratt, W.K., "Quantitative Design and Evaluation of Enhancement/Thresholding Edge Detectors", Proc. of IEEE, 67(5)753-763,1979.

[3] Ben-Arie, J. e Rao, K.R., "A Novel Approach for Template Matching by Nonorthogonal Image Expansion", IEEE Transactions on Circuits and Systems for Video Technology, Vol.3, N⁰.1, Fev.1993. [4] Nandy, D. e Ben-Arie, J., "EXM Eigen Templates for Detecting and Classifying Arbitrary Junctions". IEEE International Conference on Image Processing, 1998.

[5] Rao, K.R. e Ben-Arie, J., "Multiple Template Matching Using the Expansion Filter", IEEE Transactions on Circuits and Systems for Video Technology, Vol.4, N⁰.5, out.1994.

[6] Rao, K. R. e Ben-Arie, J., "Optimal Edge Detection Using Expansion Matching and Restoration", IEEE Transactions on Pattern Analysis and machine Intelligence, Vol.16, N⁰.12, dez.1994.

[7] Wang, Z., Rao, K.R. e Ben-Arie, J., "Optimal Ramp Edge Detection Using Expansion Matching", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.18, N⁰.11, dez.1996.h

(c)

(f)

(1)

Figura 7: (a) Imagem original. (b)(c)(d) Quinas de 90° , 45° e 135° detectadas (método A). (e)(f)(g) Quinas detectadas (método B). (h)(i)(j)(k) Quinas detectadas pelo método C. (vide tabela 2) (l) Resultados de [4].