
*  This work was supported by the Ericsson Research Brazili an Branch 
under the ERBB/UFC Technical Cooperation Contract. 

PERFORMANCE ANALYSIS OF EIGENSTRUCTURE-BASED TECHNIQUES 
FOR ARRAY PROCESSING IN WIRELESS COMM UNICATIONS (* ) 

F. R. P. Cavalcanti, J. C. M. Mota, C. E.R. Fernandes, A. L. F. de Almeida � � � � � � � � � � � � 	 � 
 � � � 
 � � � � � � � � � 	 � 
 � � � � � 
 � � � � � � � � � � 	 � 
 
 � � � � � � � � � � � � � 	 �

Universidade Federal do Ceará, Campus do Pici, CT – DEE, Bloco 705, Fortaleza-CE, Brazil

ABSTRACT 
In this contr ibution we make use of eigenstructure-based 
techniques in order to evaluate the performance of some spatial 
adaptive algor ithms. These techniques are based on the concepts 
of reduced-rank modeling and sub-spaces weighting. We study 
both MM SE-SS (Minimum Mean Squared Err or – Signal Sub-
Space) and MSINR-EC (Maximum Signal-to-Interference-plus-
Noise Ratio – Eigencanceler) techniques. The Weighted Sub-
Space (WSS) algor ithm is also applied, for the case where the 
number of co-channel interferers is not known. These algor ithms 
can achieve improved performance relative to traditional 
methods, such as the Direct Matr ix Inversion algor ithm (DMI), 
both MSINR and MM SE criteria-based, and optimum Maximal 
Ratio Combining. Fur thermore, the WSS approach demonstrates 
to be robust also in temporal processing appli cations as adaptive 
equali zation.  

1. INTRODUCTION 

It is well known that fading is a limiting factor for communication 
systems in wireless environments. Furthermore, in mobile radio, we 
have to deal with Co-Channel Interference (CCI). These limitations, 
if left unchecked, degrade bit error rate (BER) performance leading 
to a poor transmission qualit y. 

Along years of study, much work has been done in order to increase 
capacity of wireless communication systems. Classical solutions 
include adaptive temporal equali zation for frequency selective fading 
channels and Adaptive Antenna Array (AAA) diversity for flat fading 
channels [1]. Intersymbol and co-channel interferences can be 
reduced by those means. For the case of absence of CCI, the Maximal 
Ratio Combiner (MRC) is the optimal solution in the sense of 
maximizing the Signal-to-Noise Ratio (SNR) [2]. Conversely, if CCI 
is present, MRC is no longer optimum in maximizing the Signal-to-
Interference-plus-Noise Ratio (SINR), and for this case we will 
concentrate on AAA processing by means of two equivalent criteria. 
The first is the maximization of the SINR (MSINR) and the second is 
the Minimum Mean-Squared Error (MMSE). The eigenstructure-
based techniques used in this work may be divided into two different 
approaches, one of them based on Reduced-Rank (RR) modeling and 
the other based on sub-space weighting. RR-based algorithms are the 
MSINR-EC [3,4] and MMSE-SS [5] and they work with the noise 
and signal sub-spaces respectively. One algorithm based on sub-
space weighting is the WSS. For interference reduction in the 
presence of CCI, improved BER performance can be achieved by 
these techniques over traditional ones, such as the DMI (both MSINR 
and MMSE criteria-based) and MRC algorithms. 

We point out that one of the limitations of RR techniques is the need 
of a priori knowledge about the number of CCI sources present. In 
addition to this, the RR algorithms are not eff icient in a frequency 
selective fading environment. This is because both MSINR-EC and 
MMSE-SS are rank-selection techniques. Such limitations disappear 
in sub-space weighting methods, as the WSS algorithm. WSS shows 
to be robust not only in the AAA spatial processing but also in 
temporal processing appli cations, as adaptive equali zation. 

This paper is organized as follows: section 2 briefly describes the 
signal model. Section 3 derives the expressions of the MMSE and 

MSINR criteria for eigenstructure-based algorithms. Simulation 
results are presented next, in section 4. Section 5 introduces sub-
space techniques for temporal equali zation, with some preliminary 
results and in section 6 we draw some conclusions. 

2. SIGNAL MODEL 

Let us assume a mobile communication system that employs an N 
element linear Adaptive Antenna Array (AAA) at the base station. 
We represent the signal received at the array as 

[ ]TN nxnxnxn ][],...,[],[][ 110 −=x , where the superscript T denotes 

transpose and each entry xk[n], k = 0, 1,..., N-1, represents the signal 
received at the antenna element k after coherent demodulation, 
matched filt ering and sampling at t = nT. The environment is 
assumed to be a flat Rayleigh fading channel in the presence of white 
Gaussian noise and co-channel interference. The signal vector is then 
represented as: 
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where ][ nu , ][ ni  and ][n�  are the vector components relative to 

desired user, interference and noise signals, respectively. As and Ai 
are the desired user and interference signal amplitudes, respectively. 
The complex gain for the desired user signal is included in the vector 
hS, while for interferers signals the gains are represented by the 
vectors hj, where j = 1,..., L, and L is the number of CCI sources 
present. It is assumed that spacing between antenna elements is larger 
than the coherence distance in such a way that fading is independent 
between any two antennas. Therefore, these spatial channel vectors 
are complex-valued, zero-mean and multi variate Gaussian distributed 
with uncorrelated real and imaginary parts, and unity variance. 
Furthermore, they are mutuall y independent and assumed to be 
stationary over a time lag corresponding to a prescribed number of 
symbol periods. The sequence a[n] represents the uncorrelated data 
symbols for the user of interest, and it assumes the values { +1,-1} 
with equal probabiliti es (BPSK modulation is employed). The 
ambient noise, represented by the vector νν[n], is complex-valued, 
stationary, zero-mean, white Gaussian distributed with variance 2

νσ . 

We further consider an asynchronous sampling model for the CCI 
symbol. The term zj[n] in eq. (1) represents the convolution between 
the mutuall y independent CCI data symbols, bj[n], and the overall 
equivalent impulse response, g(t), for the transmitter, channel and 
receiver together. This term can be written as: 
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where g(t) has a raised-cosine pulse shape with excess bandwidth β, 
and the uncorrelated CCI data symbols bj[n] are mutuall y 
independent (also independent of a[n]) and may assume values 
{ +1,-1} with equal probabilit y. The lack of synchronism among users 
is modeled by the random variable τj, which represents the timing 
phase for the j-th interferer, and it is assumed to have a uniform 



 

distribution over the interval [0,T], where T is the symbol period. 
This allows the CCI signals to be sampled in time instants different 
from those of the user of interest. 

3. EIGENSTRUCTURE-BASED ALGORITHMS 

The output of the AAA optimum combiner is given by 

][][ nny xwH= , where the optimum weight vector w, in the 

minimum mean square error sense, is expressed as rRw 1−= , R 
representing the covariance matrix of the received signal vector and r  
the cross-correlation vector between the desired signal and the 
received vector, { } SS hhxr sAnnaE == ][][* , which is estimated by: 
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where the asterisk represents complex conjugation. We have used M 
to denote the number of time samples of the training sequence, i.e., 
the window size used in the calculation. 

Since the covariance matrix is Hermitian, it is possible to diagonali ze 
the matrix R by using a Unitary Similarity Transformation. The 
resulting diagonali zed matrix is expressed as follows [6]: 

,RQQ
� H=  (4) 

where the N-by-N matrix Q has as its columns the orthonormal set of 
eigenvectors 1q , 2q , ... , Nq  of the matrix R, and ΛΛ is a diagonal 

matrix which has the associated eigenvalues 1λ , 2λ , ... , Nλ for the 

elements of its main diagonal. 

Owing to the orthonormal nature of the eigenvectors, we find that 
QHQ = I , where I  is the N x N identity matrix. From this and eq. (4) 
we rewrite matrix R as follows [6]: 
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It is important to recall that, as R is hermitian so is R-1, and their 
eigenvectors are the same. For this reason, R-1 may be obtained from 

eq. (5), by only changing kλ  by kλ1 . 

From eq. (1) and the assumption of mutual independence among the 
user signal, interference and noise, it is clear that we can rewrite R as 
a sum of matrices, 

iiu RRRR ++= , where 
uR , 

iR  and 
νR  are 

respectively the covariance matrices of the components, ][ nu , ][ ni  

and ][n� , of the signal ][nx . 

From this consideration, and under the assumption that the desired 
user signal, ][nu , and the noise,  ][n� , are white signals, it is 

straightforward to note that each kλ  can be decomposed in three 

components, )(u
kλ , )(i

kλ  and )(νλ k , associated to each of the signal 

components, ][ nu , ][ ni  and ][n� , respectively. From this and eq. 

(4), we can rewrite the matrix of eigenvalues associated to the 
eigenvectors of the matrix in eq. (5), as: 
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or equivalently, 
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To make this statement, we consider the Karhunen-Loève expansion 
[6]. We will analyze three different spatial adaptive algorithms, 
which make use of the eigenstructure of the covariance matrix, and 
are supposed to be a better solution to the optimum combiner in 
different link situations. Each of these methods is based on a different 
covariance matrix, and therefore each matrix has different 
compositions on the space of representation.  

The selection of the space of representation is based on an energy 
criterion, taking into account eq. (6b) and the fact we have organized 
the eigenvectors of the covariance matrix in the descending order of 

their associated eigenvalues, such that, 1λ ≥ 2λ ≥...≥ pλ ≥...≥ Nλ , 

where p is the value that approximates the signal sub-space 
dimension. This means that nearly the whole signal sub-space can be 

defined by the p largest eigenvalues, 1λ ≥ 2λ ≥...≥ pλ , p < N. On the 

other hand, we assume the noise sub-space is composed by the 

remaining eigenvalues, i.e., 1+pλ ≥...≥ Nλ . 

In order to take conclusions regarding their eff iciency and 
appli cabilit y we evaluate the BER performance for each of these 
algorithms and compare them to traditional methods. Two of the 
following algorithms (MMSE-SS and MSINR-EC) consider the a 
priori knowledge about the number of CCI sources present, while the 
third one (WSS) estimates this value by weighting the space relative 
to the interference covariance matrix. 

- MMSE-SS: 

The MMSE cost function is intended to minimize the mean-squared 
error (MSE) between the array output and the desired signal. Let us 
assume that for the MMSE cost function the signal sub-space is 
composed by the desired signal plus CCI components. We may 
express the MMSE covariance matrix as: 
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where, 
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However, we can estimate this covariance matrix by a reduced-rank 
approximation, which makes use only of the eigenvectors associated 
to the largest p eigenvalues [5]. Therefore, based on eq. (5), the RR 
approach to the MMSE estimate can be written simply as: 
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Here, it is supposed p = L+1. This procedure leads to the following 
sub-space approximation of the weight vector [5,6]: 
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Note that each selected eigenvector is weighted by its respective 
eigenvalue, which may be expressed as in (6b). 

- MSINR-EC: 

The MSINR cost function attempts to maximize the Signal-to-
Interference-plus-Noise Ratio (SINR) at the array output. In this case, 
we assume the signal sub-space is composed only by the CCI 
components, and we can write the covariance matrix estimate as 
follows: 
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The sub-space approach for estimation of the covariance matrix is 
based on the appli cation of a reduced-rank method, known as the 
Eigencanceler (EC) [3,4], which performs interference cancellation 
by making use of the noise sub-space, which is said to be orthogonal 
to the interference sub-space. In estimating the Eigencanceler 
covariance matrix, we employ only the eigenvectors associated to the 
N – p smallest eigenvalues of the matrix 

MSINRR̂ . As a result we 

obtain the estimation of the inverse covariance matrix, as follows: 
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where p = L. This procedure leads to the following MSINR-EC 
weight vector [6]: 
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Once the computation of the covariance matrix of this algorithm does 
not take into account the desired user signal sub-space, we can state 
that ku

k ∀= ,0)(λ . Therefore, eq. (6a) can be rewritten as: 
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Which leads to: 
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- WSS Technique 

It is still possible to deal with the problem of the AAA optimum 
combiner considering the more practical assumption that the number 
of interferers is not known in advance and must, therefore, be 
estimated by any means. To accomplish this task the WSS method 
works with the eigenvalues of the signal sub-space, in the absence of 
noise These eigenvalues are weighted by a non-linear function, which 
is chosen to emphasize the eigenvalues associated to large interferers, 
leaving them alone, and force to zero those associated to weak 
interferers, if exist.  

In modeling WSS covariance matrix, we assume the signal sub-space 
is composed only by the CCI components. Thus, we can express the 
covariance matrix from eq. (11), just by subtracting the noise power. 
This leads to: 

IRR MSINR
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From this and eq. (6b), we see 0)( =νλ k
. Therefore, )( i

kk λλ = , 

k = 1, ... ,N, are the estimated eigenvalues representing the 
interference in absence of noise. The non-linear function used to 
weight the sub-spaces is composed by the addition of two TAN-1(• ) 
functions, each one properly scaled and shifted, in such a way to 

provide the behavior discussed above. This function is used to 
estimate the interference plus noise matrix, which can be written as 
[6]:  
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where ( )kf λ  is the non-linear function we have just described. 

At last, it is possible to make a quantitative analysis of the 
eigenvalues composition, by the following observation: 
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4. SIMULATION RESULT S 

In this section we present performance results relative to the BER of 
the eigenstructure-based algorithms, for the signal model discussed 
before. We make some conclusions by varying criti cal parameters as 
the number of CCI sources, the signal-to-interference ratio (SIR) per 
interferer and number of antenna elements. Simulation results were 
based on a slot format composed of 162 symbols, 14 of which are for 
training in the beginning of the slot [7]. The remaining samples were 
used to evaluate the BER. All The results are averages of 480.000 
Monte Carlo runs. In this work we have considered that all i nterferers 
signals have the same power.  

4.1. Reduced Rank Algor ithms for MM SE and MSINR 
criteria. 

For these simulation results we employ N = 4 antenna elements. The 
simulation results were obtained for a SNR range of –6 to +6 dB per 
antenna element. Two cases were studied, one for L = 1 and the other 
for L = 3 CCI sources. Two scenarios are examined: the first one 
represents a less severe influence of the interferers (SIR = 7dB), 
while in the other CCI power is stronger (SIR = 0dB). 

- SIR = 7 dB: 

In this situation, for L = 1, figure 1 shows that the MMSE-SS 
outperforms its classical version (MMSE-DMI). However, comparing 
to figure 2, we see that the MSINR-EC does not have any gain in 
performance relative to the MSINR-DMI, thereby showing the strong 
sensiti vity of the MSINR-EC to the degrees of freedom of the array, 
i.e., MSINR-EC severely degrades its performance when we decrease 
the difference between the number of antenna elements (N) and the 
number of signals involved (L + 1).  

In the cases of figures 1 and 2, the SIR is relatively high, such that 
the BER of the MRC remains still at a low level. However, as the 
value of the SNR per antenna increases, we note the performance of 
MRC is not so much improved as those of the other algorithms. 

For L = 3, we observe, in figure 2, that all the algorithms, except the 
MSINR-EC, present nearly the same performance, compared to the 
case in figure 1. Also clear in figure 2 is the fact that MMSE-SS and 
MMSE-DMI performances are exactly the same, as expected, since 
for this case (L = 3) there is no rank reduction (p = N). Here the 
contribution of the interferer power, )(

4
iλ , to the eigenvalue, 

)(
4

ECMSINR−λ , associated to noise sub-space is larger than in the case 

L = 1. 



 

 

Figure 1: BER performance of the MMSE and MSINR criteria based algorithms, for 
N = 4 antenna elements, L = 1 CCI source and SIR = 7dB. 

 

Figure 2: BER performance of the MMSE and MSINR criteria based algorithms, for 
N = 4 antenna elements, L = 3 CCI sources and SIR = 7dB. 

- SIR = 0dB: 

Now we compare the performance of the same algorithms for a 
scenario presenting higher co-channel interference. Comparisons 
between figures 1 and 3 show MRC is severely affected by a stronger 
CCI, as expected, while MSINR-EC and MMSE-SS performances 
remain almost unchanged. 

For the case L=3, SIR=0dB the same conclusion can be taken 
regarding the MRC, MMSE-SS and MSINR-EC performances, as it 
is clear from comparison between figures 2 and 4. This comparison 
also ill ustrates the property of the Eigencanceler to be robust in a 
situation of increased interference power. However, MMSE-SS 
performance was superior to MSINR-EC even after some degradation 
due to enhanced CCI power. 

4.2. Eigenstructure-Based Algor ithms Performance with 
Increasing Number of CCI Sources 

The results presented in this section are concerned to the robustness 
of the eigenstructure-based techniques relative to the quantity of 
interferers present. Here, we have used an 8-antenna elements array, 
to allow a minimum degree of freedom, even when up to 6 CCI 
components are present. 

 

Figure 3: BER performance of the MMSE and MSINR criteria based algorithms, for 
N = 4 antenna elements, L = 1 CCI source and SIR = 0dB. 

 

Figure 4: BER performance of the MMSE and MSINR criteria based algorithms, for 
N = 4 antenna elements, L = 3 CCI sources and SIR = 0dB. 

As we can see in figure 5, MSINR-EC is the most sensiti ve to the 
increasing number of interference sources. On the other hand, WSS 
presents the lowest degradation in performance, which show this 
technique is suitable to be used in a scenario with several weak 
interferers. 

We also verified WSS performance in a higher interference scenario 
(SIR = 0dB) in comparison to the RR algorithms. Figure 6 shows that 
in this case, WSS still works better than RR methods. We also 
observe that MSINR-EC and MMSE-SS exhibit nearly the same 
performance degradation. However, when the number of interferers is 
larger than 4 (i.e., less than 3 degrees of freedom), the degradation of 
MSINR-EC becomes stronger. This result reinforces the sensiti vity of 
MSINR-EC relative to number of CCI sources present (see figures 1 
and 2). 

In the case of a weaker interference (SIR=7dB) we can state the 
superiority of WSS and MMSE-SS compared to MSNIR-EC is due to 
the eigenstructure of covariance matrix that makes use of the signal 
sub-space. When we deal with a high number of interferers, 
compared to N, their energy spread out towards the N-dimension of 



 

the covariance matrix and the noise sub-space approach is no more a 
good alternative. 

 

Figure 5: BER performance of the MMSE-SS, MSINR-EC and WSS algorithms, for 
N = 8 antenna elements, SNR = 0dB and SIR = 7dB. 

 

Figure 6: BER performance of the MMSE-SS, MSINR-EC and WSS algorithms, for 
N = 8 antenna elements, SNR = 0dB and SIR = 0dB. 

If the power levels of CCI and noise are close, as occurs in the case 
of figure 6, the powers of interferers and noise are found mixed along 
the N-dimension space. Thus, the correct eigenvector selection in 
both signal and noise sub-space approaches are no more guaranteed, 
as there is no more separation criterion between signal and noise sub-
spaces. In other words, the contributions of both signal and noise 
power to the eigenvalues are so close that it is no longer possible to 
distinguish if the energy represented by a given eigenvalue is 
concerned, in its major part, with the interferer signal or with the 
noise. This fact is more detailed in the next section. 

4.3. Eigenvalue analysis for MM SE-SS, MSINR-DMI and 
WSS algor ithms. 

In this section we are concerned to the analysis of eigenvalue 
distribution along the N-dimension of the covariance matrix. This 
kind of observation allows us to relate the effect of both SNR and 
SIR levels on the composition of these eigenvalues for each of 
reduced rank and sub-space algorithms. 

The eigenvalue distribution shown in figure 7 is obtained for 
SIR=0dB and SNR=0dB, in the presence of 1 CCI component. Using 

an N=4 element antenna array, for MSINR-EC most of the 
interference power is concentrated in the larger eigenvalue, indicating 
the use of a reduced rank model for the covariance matrix. The 3 
smallest eigenvalues represent the noise power (i.e. their magnitudes 
equals noise variance). 

For WSS, there is not noise contribution and the eigenvalues 
represent only the interference power. That is why this power is not 
as concentrated as in the MSINR-EC case. Since MMSE-SS 
covariance matrix contains also the desired user signal contribution, 
we observe there is an offset in the eigenvalue distribution curve. 

 

Figure 7: Eigenvalue distribution for SIR = 0dB, SNR = 0dB, L = 1 CCI source, with 
N = 4 antenna elements. 

 

Figure 8: Eigenvalue distribution for SIR =15dB, SNR = 0dB, L = 1 CCI source, with 
N = 4 antenna elements. 

A very ill ustrative situation is shown in figure 8. In this simulation 
we have used a SIR=15dB and SNR=0dB scenario. Thus, in this 
case, the interference is very weak, while the noise is kept strong. 
Therefore, since WSS covariance matrix includes only the interferer 
sub-space, its eigenvalues are close to zero, as expected. It is well 
known MSINR-EC covariance matrix includes interference plus 
noise energy. This fact is clear from the figure 8. Once the CCI 
present is very small the eigenvalues are all close to the noise 
variance. At last, we observe the main difference of MMSE-SS 
approach relative to the MSINR-EC is the inclusion of the desired 
user signal power in the magnitude of the first eigenvalue. 



 

5. WSS TECHNIQUE FOR TEMPORAL EQUALIZATION 

In this section we present a preliminary result of the WSS algorithm 
applied to the adaptive li near equali zation problem. To ill ustrate 
frequency selective fading, an ISI channel model was chosen. Figure 
9 shows its discrete impulse response, where T is the symbol period. 

The channel model is composed by two ISI components that span one 
symbol period on each side of the desired signal component. We use 
a 9 tap li near adaptive equali zer. The SNR is set to 25 dB and 8-PSK 
modulation is employed. After the tap weight acquisiti on, we obtain 
the output constellation for 6x162 = 972 transmitted symbols. The 
global impulse response (channel + equali zer) is also observed. 

 

Figure 9: ISI channel impulse response 

According to figure 10 we can state MMSE-WSS works better than 
MSINR-DMI suggesting the use of sub-space methods also for 
temporal processing. We can see this in another way if we observe 
figure 11. The residual ISI after equali zation is larger if no sub-space 
weighting is used 

 
(a) 

 
(b) 

Figure 10: Output Constellations for both (a) MMSE-WSS and (b) MSINR-DMI 

 

Figure 11: Global impulse response for (a) MSINR-DMI and (b) MMSE-WSS. 

6. SUMM ARY AND CONCLUSIONS 

It has been shown that algorithms based on sub-space and reduced 
rank techniques can improve BER performance of an antenna 
diversity array. For flat Rayleigh fading in the presence of co-channel 
interferers, these techniques, especiall y MMSE-SS and WSS, 
outperformed conventional methods. MSINR-EC was shown to be 
very sensiti ve to the number of interferers, but robust to the CCI 
power enhancement. MMSE-SS employs the desired user signal sub-
space, and therefore presented improved performance even in the 
presence of several CCI components. However, in a more severe 
scenario of interference power, it showed a considerable degradation, 
although its BER performance still remained better than that of 
MSINR-EC. On the other hand, WSS algorithm performed the most 
stable. In this sub-space method, eigenvectors (representing 
interference sub-space) are never completely discarded, but properly 
weighted. All eigenstructure-based algorithms studied in this work 
were superior in performance compared to MRC for a stronger CCI 
scenario, especiall y for high SNR. These conclusions suggest their 
employment in future mobile communication systems where high 
capacity is desired under high levels of co-channel interference. 

The work focused in the analysis of the eigenstructure of the 
covariance matrices employed by each method, and some 
considerations were made about the eigenvalues distribution obtained 
by the respective matrices. This distribution reflects the concentration 
of the power of the signal components over the sub-spaces. We can 
say that each eigenvector points out the direction where is 
concentrated the power related to the associated eigenvalues. 

Finall y, it was presented an appli cation of the algorithms studied in 
the problem of temporal adaptive li near equali zation, and preliminary 
results have confirmed the superiority of the WSS algorithm even in 
this case. Future results expected involve the appli cation of other 
eigenstructure-based techniques to the adaptive equali zation problem 
and possible extension to space-time processing. 
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