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ABSTRACT

In this contribution we make use of eigenstructure-based
techniques in order to evaluate the performance of some spatial
adaptive algorithms. These techniques ar e based on the mncepts
of reduced-rank modeling and sub-spaces weighting. We study
both MM SE-SS (Minimum Mean Squared Err or — Signal Sub-
Space) and MSINR-EC (Maximum Signal-to-I nterference-plus-
Noise Ratio — Eigencancder) techniques. The Weighted Sub-
Space (WSS algorithm is also applied, for the case where the
number of co-channel interferersisnot known. These algorithms
can achieve improved performance rdative to traditional
methods, such as the Direct Matrix Inversion algorithm (DM1),
both MSINR and MM SE criteria-based, and optimum Maximal
Ratio Combining. Furthermore, the WSSappr oach demonstrates
to be robust alsoin temporal processng applications as adaptive
equali zation.

1. INTRODUCTION

It is well known that fading is a limiting factor for communication
systems in wireless environments. Furthermore, in mobil e radio, we
have to ded with Co-Channel Interference (CCl). These limitations,
if left unchecked, degrade bit error rate (BER) performance lealing
to apoor transmisson quality.

Along yeas of study, much work has been done in order to incresse
capacity of wireless communication systems. Clasgcal solutions
include adaptive temporal equali zation for frequency selective fading
channels and Adaptive Antenna Array (AAA) diversity for flat fading
channels [1]. Intersymbol and co-channel interferences can be
reduced by those means. For the case of absence of CCl, the Maximal
Ratio Combiner (MRC) is the optimal solution in the sense of
maximizing the Signal-to-Noise Ratio (SNR) [2]. Conversely, if CCl
is present, MRC is no longer optimum in maximizing the Signal-to-
Interference-plus-Noise Ratio (SINR), and for this case we will
concentrate on AAA processng by means of two equivalent criteria.
Thefirst is the maximization of the SINR (MSINR) and the secondis
the Minimum Mean-Squared Error (MM SE). The égenstructure-
based techniques used in this work may be divided into two different
approaches, one of them based on Reduced-Rank (RR) modeli ng and
the other based on sub-space weighting. RR-based algorithms are the
MSINR-EC [3,4] and MM SE-SS [5] and they work with the noise
and signal sub-spaces respectively. One dgorithm based on sub-
space weighting is the WSS For interference reduction in the
presence of CCl, improved BER performance can be ahieved by
these techniques over traditi onal ones, such asthe DMI (both MSINR
and MM SE criteria-based) and MRC agorithms.

We point out that one of the limitations of RR techniquesis the need
of a priori knowledge aout the number of CCl sources present. In
addition to this, the RR agorithms are not efficient in a frequency
selective fading environment. This is because both MSINR-EC and
MM SE-SSare rank-selection techniques. Such limitations disappea
in sub-space weighting methods, as the WSSalgarithm. WSSshows
to be robust not only in the AAA spatial processng but also in
temporal processng appli cations, as adaptive ejudli zation.

This paper is organized as follows: section 2 hriefly describes the
signal model. Section 3 ckrives the expressons of the MM SE and
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MSINR criteria for eigenstructure-based algorithms. Simulation
results are presented next, in section 4. Section 5 introduces sub-
space techniques for temporal eguali zation, with some preliminary
results and in section 6 we draw some conclusions.

2. SIGNAL MODEL

Let us asaume amobile communication system that employs an N
element linear Adaptive Antenna Array (AAA) at the base station.
We represent the signa received a the aray as

x[n] = [xo[n], xl[n],,,,,x,\‘_l[n]]T , Where the superscript T denotes

transpose and each entry x[n], k=0, 1,...,N-1, represents the signal
received at the aitenna dement k after coherent demodulation,
matched filtering and sampling at t = nT. The ewironment is
asaumed to be aflat Rayleigh fading channel in the presence of white
Gausdan noise and co-channel interference. The signal vector isthen
represented as.

x[n] =u[n] +i[n] + v[n]
:Ashsa[n]+iAihjzj[n]+v[n], Q)

where u[n], i[n] and v[n] are the vector components relative to
desired user, interference and roise signals, respectively. As and A
are the desired user and interference signal amplitudes, respectively.
The complex gain for the desired user signal isincluded in the vector
hs, while for interferers dgnals the gains are represented by the
vectors h;, where j = 1,..., L, and L is the number of CCl sources
present. It isassumed that spacing between antenna dementsislarger
than the coherence distance in such away that fading is independent
between any two antennas. Therefore, these spatial channel vectors
are complex-valued, zero-mean and multi variate Gaussan dstributed
with urcorrelated red and imaginary parts, and unty variance.
Furthermore, they are mutually independent and assumed to be
stationary over a time lag corresponding to a prescribed number of
symbol periods. The sequence a[n] represents the uncorrelated data
symbols for the user of interest, and it assumes the values {+1,-1}
with equal probabilities (BPSK modulation is employed). The
ambient noise, represented by the vector v[n], is complex-valued,
stationary, zero-mean, white Gaussan distributed with variance a‘f.

We further consider an asynchronous sampling model for the CCl
symbol. The term z[n] in eq. (1) represents the convolution between
the mutually independent CCl data symbols, bj[n], and the overall
equivalent impulse response, g(t), for the transmitter, channel and
receiver together. This term can be written as:

z;[n] = ibj[m]g(nT—mT—Tj), 2

m=—oo

where g(t) has a raised-cosine pulse shape with excess bandwidth S,
and the uncorrelated CCl data symbols bj[n] are mutualy
independent (also independent of a[n]) and may assume values
{+1,-1} with equal probability. The lack of synchronism among users
is modeled by the random variable 7, which represents the timing
phase for the j-th interferer, and it is assumed to have auniform



distribution over the interval [0,T], where T is the symbol period.
This allows the CCl signals to be sampled in time instants different
from those of the user of interest.

3. EIGENSTRUCTURE-BASED ALGORITHMS

The output of the AAA optimum combiner is given by
y[n] =w"x[n], where the optimum weight vector w, in the

minimum mean square eror sense, is expresed as w = R7'r, R
representing the covariance matrix of the received signal vector andr
the crosscorrelation vector between the desired signal and the

received vector, r = E{a’ [nX[r]|h} = Ahg, which is estimated by:

L1 M
r—VnZa [n]x[n], 3

where the asterisk represents complex conjugation. We have used M
to denote the number of time samples of the training sequence, i.e.,
the window size used in the cal culation.

Since the covariance matrix is Hermitian, it is possble to diagonali ze
the matrix R by using a Unitary Smilarity Transformation. The
resulting diagonali zed matrix is expressed as foll ows [6]:

A=Q"RQ, @
where the N-by-N matrix Q has asits columns the orthonormal set of
eigenvectors d,:9,, 0y of the matrix R, and A is a diagonal

matrix which hes the sssociated eigenvalues A, A, ..., A for the
elements of its main dagonal.

Owing to the orthonormal nature of the dgenvectors, we find that
Q"Q =1, wherel isthe N x N identity matrix. From this and eg. (4)
we rewrite matrix R as foll ows [6]:

N
R:QAQH:Z)‘ququ (5

It is important to recall that, as R is hermitian so is R? and their
eigenvectors are the same. For this reason, R™ may be obtained from

eq. (5), by only changing A, by I/A, .

From eq. (1) and the assumption of mutual independence anong the
user signal, interference and roise, it is clea that we canrewriteR as
a sum of matrices, R = R,+R, +R,, where R, R and R, &€

respectively the covariance matrices of the components, u[n], i[n]
and y[n], of thesignal x[n].

From this consideration, and uncer the assumption that the desired
user signal, u[n], and the noise, v[n], are white signals, it is

straightforward to note that each Ak can be decomposed in three

components, /\f(“) ,/\E) and )\f(") , asciated to each of the signal
components, u[n], i[n] and v[n], respectively. From this and eq.

(4), we can rewrite the matrix of eigenvalues assciated to the
eigenvectors of the matrix in eg. (5), as:

A=A +A+A, (6a)
or equivalently,

A =AW + A0 4400 k=1 N, (6b)

To make this gatement, we consider the Karhurnen-Loéve expansion
[6]. We will analyze three different spatial adaptive dgorithms,
which make use of the egenstructure of the covariance matrix, and
are supposed to be a better solution to the optimum combiner in
different link situations. Each of these methodsis based on adifferent
covariance matrix, and therefore ea&h matrix has different
compositi ons on the space of representation.

The selection of the space of representation is based on an energy
criterion, taking into acoount eg. (6b) and the fact we have organized
the @genvectors of the covariance matrix in the descending arder of

their associated eigenvalues, such that, A;2A,2.2A 2.2y,

where p is the vaue that approximates the signal sub-space
dimension. This means that nealy the whole signal sub-space can be

defined by the p largest eigenvalues, A;=A,2..2 A, p<N.Onthe
other hand, we assume the noise sub-space is composed by the
remaining eigenvalues, i.e., Apﬂz...zAN .

In order to take conclusions regarding their efficiency and
applicability we evaluate the BER performance for each of these
algarithms and compare them to traditional methods. Two o the
following algarithms (MM SE-SS and MSINR-EC) consider the a
priori knowledge ebout the number of CCl sources present, whil e the
third one (WSS estimates this value by weighting the space relative
to the interference covariance matrix.

- MMSE-SS:

The MM SE cost function is intended to minimize the mean-squared
error (MSE) between the aray output and the desired signal. Let us
asaume that for the MM SE cost function the signal sub-space is

composed by the desired signal plus CCl components. We may
expressthe MM SE covariance matrix as:

1 M
Roymse = M_Z X[n]XH [n]
n=1

Q)
SR +R +R.
where,
L1 0
RU:VZ(u[n]uH[n])D
n=1 0
I R H
Ry == (") O ®

n=

FAQV = Miil (v[n]vH [n])g

However, we can estimate this covariance matrix by a reduced-rank
approximation, which makes use only of the @genvectors associated
to the largest p eigenvalues [5]. Therefore, based on eg. (5), the RR
approach to the MM SE estimate can be written simply as:

Ood

~

p
Ruwse-ss = » A0,y )
k=1

Here, it is supposed p = L+1. This procedure leads to the foll owing
sub-space goproximation of the weight vector [5,6]:

~ . P 1
Wpmse -ss ~ RMlMSE—SSr = %A_qqu E’ (10)
=1 71k



Note that each selected eigenvector is weighted by its respective
eigenvalue, which may be expressed asin (6b).

- MSINR-EC:

The MSINR cost function attempts to maximize the Signal-to-
Interference-plus-Noise Ratio (SINR) at the aray output. In thiscase,
we asume the signal sub-space is composed only by the CCl
components, and we can write the covariance matrix estimate &
follows:

~ M

_1 _ _ H
Rusme = nz(x[n] h.aln])(x{n] —haln]) (12)

The sub-space gproach for estimation of the covariance matrix is
based on the gplication of a reduced-rank method, known as the
Eigencanceler (EC) [3,4], which performs interference cancell ation
by making use of the noise sub-space, which is sid to be orthogmal
to the interference sub-space. In estimating the Eigencanceler
covariance matrix, we employ only the @genvectors associated to the

N —p smallest eigenvalues of the matrix ﬁMSINR . As a result we

obtain the estimation of the inverse covariance matrix, as foll ows:

_ 1 X
RMlSINR -EC =_2 zqquH7 (12

aV k=p+1

where p = L. This procedure leads to the following MSINR-EC
weight vector [6]:

~ R 1 N
WsinR-EC RMlSINR—ECr = % Zqur % (13)
v k=p+l

Once the computation of the covariance matrix of this algorithm does
not take into account the desired user signal sub-space, we can state
that }\f(“’ = 0,0 k . Therefore, eqg. (6a) can be rewritten as:

AMSINR—EC :Ai +Av (143)
Which leads to:
AMSNRTES) = Q0 4 AW k=1, N. (14b)
- WSS Technique

It is dill possble to ded with the problem of the AAA optimum
combiner considering the more practical assumption that the number
of interferers is not known in advance and must, therefore, be
estimated by any means. To accomplish this task the WSS method
works with the eégenvalues of the signal sub-space, in the absence of
noise These eégenvalues are weighted by anon-linea function, which
is chosen to emphasi ze the egenval ues asociated to large interferers,
leaving them aone, and force to zero those assciated to weak
interferers, if exist.

In modeling WSS covariance matrix, we assuume the signal sub-space
is composed only by the CCI components. Thus, we can expressthe

covariance matrix from eqg. (11), just by subtracting the noise power.
Thislealsto:

R= IiMS|NR -0/l (15

From this and eq. (6b), we see A"} = 0. Therefore, A, = A,
k=1,..,N, are the etimated eigenvalues representing the
interference in absence of noise. The non-linea function used to
weight the sub-spaces is composed by the alditi on of two TAN™(+)
functions, each one properly scaled and shifted, in such a way to

provide the behavior discussed above. This function is used to
estimate the interference plus noise matrix, which can be written as

[6]:
Ryss = ﬁl t( haeal +o?, (16)

where f (/\k ) is the non-linea function we have just described.

At last, it is posdble to make a quantitative analysis of the
eigenval ues compositi on, by the foll owing dbservation:

O+ A9 for MMSE - SSonly

g° Cfor k 0L
H\E), for MSINR-EC only [
A 0D (€)
DNS’), for both MMSE - Ss
O Cfork O[p+1N]
H andMSINR-EC H

4. SIMULATION RESULT S

In this sction we present performance results relative to the BER of
the egenstructure-based algarithms, for the signal model discussed
before. We make some conclusions by varying critical parameters as
the number of CCl sources, the signal-to-interference ratio (SIR) per
interferer and number of antenna dements. Simulation results were
based on a slot format composed of 162 symbals, 14 of which are for
training in the beginning o the slot [7]. The remaining samples were
used to evaluate the BER. All The results are averages of 480.000
Monte Carlo runs. In this work we have considered that all i nterferers
signals have the same power.

4.1. Reduced Rank Algorithms for MM SE and MSINR
criteria.

For these simulation results we enploy N = 4 antenna dements. The
simulation results were obtained for a SNR range of —6 to +6 dB per
antenna dement. Two cases were studied, one for L = 1 and the other
for L =3 CCl sources. Two scenarios are examined: the first one
represents a less svere influence of the interferers (SIR = 7dB),
whilein the other CCl power is dronger (SIR = 0dB).

-SIR=7dB:

In this stuation, for L =1, figure 1 shows that the MM SE-SS
outperformsits classcal version (MM SE-DMI). However, comparing
to figure 2, we see that the MSINR-EC does not have any gain in
performance relative to the MSINR-DM I, thereby showing the strong
sensitivity of the MSINR-EC to the degrees of freedom of the aray,
i.e., MSINR-EC severely degrades its performance when we decrease
the difference between the number of antenna dements (N) and the
number of signalsinvolved (L + 1).

In the cases of figures 1 and 2, the SIR is relatively high, such that
the BER of the MRC remains gill at a low level. However, as the
value of the SNR per antenna increases, we note the performance of
MRCis not so much improved as those of the other algarithms.

For L = 3, we observe, in figure 2, that all the dgarithms, except the
MSINR-EC, present nealy the same performance, compared to the
casein figure 1. Also clea infigure 2 is the fact that MM SE-SSand
MM SE-DMI performances are exactly the same, as expected, since
for this case (L = 3) there is no rank reduction (p = N). Here the
contribution of the interferer power, A{), to the dgenvalue,

AMSINREC) " aseciated to noise sub-space is larger than in the case

L=1
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Figure 1: BER performance of the MM SE and MSINR criteria based agorithms, for
N =4 antennaelements, L =1 CCl source and SIR = 7dB.
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Figure 2: BER performance of the MM SE and MSINR criteria based agorithms, for
N =4 antennaelements, L = 3 CCl sources and SIR = 7dB.

- SIR = 0dB:

Now we compare the performance of the same dgarithms for a
scenario presenting higher co-channel interference. Comparisons
between figures 1 and 3show MRCis sverely affected by a stronger
Cdl, as expected, while MSINR-EC and MM SE-SS performances
remain almost unchanged.

For the case L=3, SIR=0dB the same conclusion can be taken
regarding the MRC, MM SE-SSand MSINR-EC performances, as it
is clea from comparison between figures 2 and 4 This comparison
also ill ustrates the property of the Eigencanceler to be robust in a
situation of incressed interference power. However, MM SE-SS
performance was superior to MSINR-EC even after some degradation
due to enhanced CCl power.

4.2. Eigenstructure-Based Algorithms Performance with
Increasing Number of CCIl Sources

The results presented in this section are concerned to the robustness
of the egenstructure-based techniques relative to the quantity of
interferers present. Here, we have used an 8-antenna dements array,
to alow a minimum degree of freedom, even when up to 6 CCl
components are present.
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Figure 3: BER performance of the MM SE and MSINR criteria based agorithms, for
N =4 antennaelements, L =1 CCl source and SIR = 0dB.

[| —— MMSE-DMI
| - 3~ MMSE-SS
-8~ MSINR-DMI
| ¢ MSINR-EC |
|0 MRe |
-6 4 2 0
SNR per antenna

10

O S
N N
<

Figure 4: BER performance of the MM SE and MSINR criteria based agorithms, for
N =4 antennaelements, L = 3 CCl sources and SIR = 0dB.

As we can seein figure 5, MSINR-EC is the most sensitive to the
increasing number of interference sources. On the other hand, WSS
presents the lowest degradation in performance, which show this
technique is aiitable to be used in a scenario with several wesk
interferers.

We dso verified WSSperformance in a higher interference scenario
(SIR = 0dB) in comparison to the RR algarithms. Figure 6 shows that
in this case, WSS still works better than RR methods. We dso
observe that MSINR-EC and MM SE-SS exhibit nealy the same
performance degradation. However, when the number of interferersis
larger than 4 (i.e., lessthan 3 degrees of freedom), the degradation of
MSINR-EC becomes gronger. This result reinforces the sensiti vity of
MSINR-EC relative to number of CCl sources present (seefigures 1
and 2.

In the case of a weder interference (SIR=7dB) we can state the
superiority of WSSand MM SE-SScompared to MSNIR-EC isdueto
the e@genstructure of covariance matrix that makes use of the signa
sub-space. When we ded with a high number of interferers,
compared to N, their energy spreal out towards the N-dimension of



the covariance matrix and the noise sub-space gproach is no more a
godal dternative.
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Figure5: BER performance of the MM SE-SS M SINR-EC and WSSa gorithms, for
N = 8 antennaelements, SNR = 0dB and SIR = 7dB.
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Figure 6: BER performance of the MM SE-SS M SINR-EC and WSSa gorithms, for
N = 8 antennaelements, SNR = 0dB and SIR = 0dB.

If the power levels of CCl and mise ae close, as ocaurs in the case
of figure 6, the powers of interferers and roise ae foundmixed along
the N-dimension space. Thus, the correct eigenvector selection in
both signal and rise sub-space gproaches are ho more guaranteed,
asthereis no more separation criterion between signal and roise sub-
spaces. In other words, the contributions of both signal and roise
power to the @genvalues are so close that it is no longer possble to
distinguish if the energy represented by a given eigenvalue is
concerned, in its major part, with the interferer signal or with the
noise. This fact is more detail ed in the next section.

4.3. Eigenvalue analysisfor MM SE-SS MSINR-DMI and
WSS algorithms.

In this sction we ae concerned to the analysis of eigenvalue
distribution along the N-dimension of the covariance matrix. This
kind of observation allows us to relate the dfect of both SNR and
SIR levels on the composition of these a@genvalues for each of
reduced rank and sub-space dgorithms.

The dgenvalue distribution shown in figure 7 is obtained for
SIR=0dB and SNR=0dB, in the presence of 1 CCl component. Using

an N=4 element antenna aray, for MSINR-EC most of the
interference power is concentrated in the larger eigenval ue, indicating
the use of a reduced rank model for the covariance matrix. The 3
small est eigenval ues represent the noise power (i.e. their magnitudes
equals noise variance).

For WSS there is not noise contribution and the dgenvalues
represent only the interference power. That is why this power is not
as concentrated as in the MSINR-EC case. Since MM SE-SS
covariance matrix contains also the desired user signal contribution,
we observe thereis an offset in the @genvalue distribution curve.
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Trelg - T
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Figure 7: Eigenvadue distributionfor SIR = 0dB, SNR = 0dB, L = 1 CCl source, with
N = 4 antennaelements.
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Figure 8: Eigenvadue distributionfor SIR =15aB, SNR = 0dB, L = 1 CCl source, with
N = 4 antennaelements.

A very ill ustrative situation is sown in figure 8. In this smulation
we have used a SIR=15dB and SNR=0dB scenario. Thus, in this
case, the interference is very wedk, while the noise is kept strong.
Therefore, since WSS covariance matrix includes only the interferer
sub-space, its eigenvalues are close to zero, as expected. It is well
known MSINR-EC covariance matrix includes interference plus
noise energy. This fact is clea from the figure 8. Once the CCl
present is very smal the @genvalues are dl close to the noise
variance. At last, we observe the main dfference of MM SE-SS
approach relative to the MSINR-EC is the inclusion of the desired
user signal power in the magnitude of the first eigenval ue.



5. WSSTECHNIQUE FOR TEMPORAL EQUALIZATION

In this sction we present a preliminary result of the WSSalgorithm
applied to the alaptive linea equalization problem. To ill ustrate
frequency selective fading, an ISl channel model was chosen. Figure
9 shows its discrete impulse response, where T is the symbol period.

The channel model is composed by two ISI components that span one
symbol period on eech side of the desired signal component. We use
a9tap linea adaptive equalizer. The SNRis %t to 25 B and 8PXK
modulation is employed. After the tap weight acquisition, we obtain
the output constellation for 6x162 = 972 transmitted symbols. The
global impul se response (channel + equalizer) is also doserved.

1
08
08

11|

Figure 9: 1Sl channel impuse resporse

According to figure 10 we can state MM SE-WSSworks better than
MSINR-DMI suggesting the use of sub-space methods aso for
tempora processng. We can seethis in another way if we observe
figure 11. Theresidual IS| after equali zation is larger if no sub-space
weighting is used

() (b)

Figure 10: Output Constell ations for bath (8) MM SE-WSSand (b) MSINR-DMI

0.5} .

(b)

Figure 11: Globd impuse resporse for (&) MSINR-DMI and (b) MM SE-WSS

6. SUMM ARY AND CONCLUSIONS

It has been shown that algorithms based on sub-space and reduced
rank techniques can improve BER performance of an antenna
diversity array. For flat Rayleigh fading in the presence of co-channel
interferers, these techniques, especialy MMSE-SS and WSS
outperformed conventional methods. MSINR-EC was shown to be
very sensitive to the number of interferers, but robust to the CCl
power enhancement. MM SE-SSemploys the desired user signal sub-
space, and therefore presented improved performance even in the
presence of several CCl components. However, in a more severe
scenario o interference power, it showed a considerable degradation,
athough its BER performance still remained better than that of
MSINR-EC. On the other hand, WSS algarithm performed the most
stable. In this sub-space method, eigenvectors (representing
interference sub-space) are never completely discarded, but properly
weighted. All eigenstructure-based algorithms dudied in this work
were superior in performance compared to MRC for a stronger CCl
scenario, especialy for high SNR. These conclusions suggest their
employment in future mobile communication systems where high
capacity is desired uncer high levels of co-channel interference.

The work focused in the anaysis of the dgenstructure of the
covariance matrices employed by eah method, and some
considerations were made &out the e@genvalues distribution obtained
by the respective matrices. Thisdistribution reflects the concentration
of the power of the signal components over the sub-spaces. We can
say that each eigenvector points out the direction where is
concentrated the power related to the assciated eigenval ues.

Finally, it was presented an application of the dgarithms gudied in
the problem of temporal adaptive linea equali zation, and preliminary
results have confirmed the superiority of the WSSalgarithm even in
this case. Future results expected involve the gplication of other
eigenstructure-based techniques to the alaptive egualization problem
and posghle extension to space-time processng.
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