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ABSTRACT

This work proposes an efficient image representation
based on triangular blending surfaces. The recursive
triangular partitioning proposed represents an image as
segments comprised of variable size right-angle trian-
gles. Triangular partitioning is shown [11] to be more
efficient than square partitioning. A novel and eco-
nomic parametric blending model represents each tri-
angular surface. The framework for designing blending
surfaces for triangular regions is presented. This eco-
nomic model allows coefficients (control points) to be
shared among neighboring triangles. This coefficient
sharing results in blockiness reduction as compared to
block based techniques. The technique is specially ap-
pealing for encoding images presenting smooth transi-
tions. Compression and visual quality results compare
favorably against a popular wavelet codec using decom-
position into seven bands. A greedy algorithm based on
priority queues proposed in [6] is used to further re-
duce the entropy of the control point bitstream while
preserves the quality. This algorithm provides a bet-
ter performance in a rate-distortion sense than using
uniform quantization of the control points.
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1. INTRODUCTION

Image models based on polynomial surfaces pro-
vides an interesting lossy representation. Regions rep-
resented by these surfaces are smooth and absent of
noise, which usually result in good perceived quality.
These models are specially appealing to efficiently rep-
resent smooth regions and provide an alternative to the
traditional orthogonal basis representation as found by
using KLT, DCT, LOT transforms and wavelets de-
composition.

Second generation coding schemes based on fitting
parametric polynomials to regions within an image are
proposed in the literature [13] [12]. In order to rep-
resent the image into separated smooth regions, these
techniques require boundary extraction and encoding
of the resulting pixel values. For most images, a large
portion of the bit-rate is allocated for this side infor-
mation. Another approach is found in the block based
encoder [14] using B-splines polynomials. This tech-
nique requires encoding of coefficients (from 9 to 25)
to represent each fixed size block. Despite of the coef-
ficients and/or boundary representation cost, the tech-
niques described above are proven competitive to the
JPEG-DCT algorithm.

We propose a new model for image coding using
polynomial surfaces. The segmentation or region build-
ing procedure is replaced by the Recursive Triangular
Partitioning (RTP) which is similar to quadtree par-
titioning. The proposed model uses variable size re-
gions similar to the region-based models in [13] [12],
while avoids the costs associated to boundary extrac-
tion. Our partitioning creates triangular shaped re-
gions. The proposed blending model shares an impor-
tant property of the parametric Bézier and B-splines
modeling [14] [7] [8]: coefficients are shared by neigh-
boring regions. This property provides an economic
representation while reduces blocking artifacts gener-
ated by techniques that encode regions independently
of the neighboring regions. This is the first work, be-
sides the thesis in [11], that we discuss with details the
triangular partitioning, the mathematical framework
for designing blending surfaces and an example for a
second degree polynomial basis. Results are presented
to emphasize the potential of the blending model as
encoding technique. A greedy optimization algorithm
is applied [6, 5] to further improve the compression and
quality.



2. TRIANGULAR PARTITIONING

Consider the following problem: assume an image I
with N x N pixels segmented into Ng = 2* regions of
same area A € R and k > 2 where k is an integer. We
may use square block regions or right-angle triangular
regions as shown in Fig. 1. Assume that both repre-
sentations require the pixel amplitudes (coefficients) at
the vertices (control points) of each block or triangular
region. Therefore, each block needs 4 coefficients and
each right-angle triangle needs 3 coefficients. An exam-
ple for £ = 2 and k = 4 is shown in Fig. 1. For a given
k, we provide the expressions for the required number
of coefficients for the square block and the triangular
partitioning. By applying mathematical induction on
the geometric problem as explained in [11], we find the
closed form expressions.

i) For the square block partitioning:
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for k even. It is not possible to segment a square image
with N x N into square blocks for odd k.
ii) For triangular partitioning:
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for £ even. We can show that the ratio of the num-
ber of regions by the number of coefficients required
is asymptotically twice higher for the triangular parti-
tioning than for the square partitioning. The limit for
the ratio of the number of regions over the number of
coefficients, when k£ — oo, is given as:

For square block partitioning:
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for k even.
For triangular partitioning:
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for k even. These results can be stated as:

“For a given square image I, a given number of re-
gions Nr = 2% of same area A, the triangular parti-
tioning requires about half of the coefficients required
for the square block partitioning” .

For the specific partitioning case, where polygons
have the same area using an image representation
which requires the intensities at vertices of the poly-
gons being encoded, the triangular partitioning is more
efficient than square block partitioning. For a general
case, where regions may have different areas, the supe-
riority of triangular partitioning was clearly observed
by simulations in [11]. This result suggests our investi-
gation of an image representation using triangular par-
titioning. Our approach represents triangular regions
using blending polynomials as explained in the next
section.

3. DESIGN OF BLENDING SURFACES FOR
TRIANGULAR REGIONS

Let us represent a right-angle triangle T" by its three
vertices (control points), C, L, R as illustrate in Fig.
2.

Allow us define the vectors V = CL = I — C and

—CR=TFH - and the set SA = {P: P C Rp},
where point P€ R? and region R is in the convex hull
defined by the 2-D coordinates of the control points.
For VP € Sa 3 parameterized coordinates (u,v) such
that:

BP=C+u-U+v - V,u0el01] (7)

where B and ﬁ represent the coordinates of points
P and C. The point C indicates the reference for the
parametric space as illustrate in Fig. 2. In order to
consider only points inside the triangle 7', we need the
additional constraint (u 4+ v) < 1. Points at diagonal
line segment RL have coordinates such that (u+v) = 1.

For a given image I, and a location defined by a
point P, the image intensity at that point is given
by I(T’)) For a triangle 7' defining a region Ra, we
can approximate the image intensities over this region,
In(u,v), by the parametric surface Ia(u,v) using a
parametric polynomial basis ®:

DR
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where M is the number of coefficients, @ A is the
coefficient vector, B is the polynomial basis vector and

In(u,v) = Ia(u,v)

T
X indicates the transpose of vector X.



The proposed polynomial blending surface represen-
tation interpolates at the control points. The surface
is completely defined by the intensities at control point
locations. As a result, it avoids coefficient determina-
tion as in the traditional polynomial fitting. Moreover,
the coefficient vector @ A is obtained by a fixed linear
combination of the intensities at the control points:

ag=A-GJ 9)

where CTX is the intensity control points vector for
the region Ra. A is a M x M matrix, which is inde-
pendent of the region Ra.

We find the matrix A by choosing surface interpola-
tion at control points and using Eq. 8:

= 2T =
X

INPL)=GA=T (Pp)-a (10)

from Eq. 9 follows:
Gl=8 (Pp) A-GL=T (Pp)-A=1 (11)

where I is the identity matrix. For a 2nd degree sur-
face we may choose the parametric control point vector

as?pT: [ ¢ T R S M N ]. These points
are illustrated in Fig. 2, which present the following
parametric coordinates: = (0,0) , T = (0,1), B =
(1,0), S = (0.5,0.5), M = (0,0.5) and N = (0.5,0).

Let us choose the following parametric polynomial
basis:

gT(u,v):[l u v ou-v U’ v (12)

which, when applied to the control point vector, ITP> ,
results:

1 0 0 0 0 0
1 0 1 0 0 1
$T(17P>) } 1 0 0 1 0
1
1

- 1/2 1/2 1/4 1/4 1/4 (13)

0 1/2 0 0 1/4
1/2 0 0 1/4 0

From Eq. 11, we obtain the desired matrix A by
inverting the matrix above:

1 o 0 0 0 O
-3 0 -1 0 0 4
-3 -1 0 0 4 O
4 0 0 4 -4 4 (14)
2 0 2 0 0 -4
2 2 0 0 -4 O

AvrcoriTHM RTP(Triangle T')

— Blend (7 ,BLEND_MODEL);

— IF (PSNR(T") > MINIMUM_PSNR) THEN RETURN;
— IF (Area(T) < MINIMUM_AREA) THEN RETURN;
— Split_into(T, 1L, Tr);

— RTP(Ty);

— RTP(Tr);

Table 1. Recursive Triangular Partitioning (RTP)

The resulting coefficient vector is given by Eq. 9,
where:

GA =

[14(C) IA(T) Ia(B) 1a(S) Ia(M) Ia(W)]| (15)

[

I A(T’)) corresponds to the intensity at parameter-
ized position of point P inside the region Ra. Finally,
the second degree parametric blending surface is given
by:

IAAJ(u,v) = $T(u,v)-a_&u,v €10,1], (u+v) <1 (16)

Different blending surfaces can be derived from the
framework described above depending on the polyno-
mial basis chosen and how many and where the control
points are located in the triangle. Further discussion
on this topic is found in [11].

4. RECURSIVE TRIANGULAR PARTITIONING

The proposed partitioning algorithm is described in
the following. The algorithm starts by partitioning a
square image I (which might be a region of the entire
image) into four right-angle triangles, T}, Ty, T¢., Ty as
shown in Fig. 3. The recursive routine RTP(T') is
applied to these triangles.

The RTP algorithm is presented in Table 1. The
algorithm computes the surface representation for the
triangle 7' and checks if the resulting PSNR(T) is sat-
isfactory. When the triangle T is successfully repre-
sented by the model, the algorithm is done with this
region Ra, otherwise the triangle area is computed. If
the area is greater than an allowed minimum, the algo-
rithm splits the region Ra into two other regions Rap
and Rag. The algorithm is then called recursively for
these new triangular regions. The triangular splitting
is illustrate in Fig. 5. Each time a triangle is split, a
bit set to 1 is sent to the decoder; when the triangle is
successfully represented by the blending model, a bit



set to 0 is sent. This splitting information is neces-
sary to recover the partitioning information at decoder
side. An illustration of partitioning is given in Fig. 3.
In Fig. 4 we present the partitioning for the “Lenna”
image.

When the algorithm reaches a triangle with area
smaller than the minimum, it indicates an active region
(with noise, textures and/or edges) where polynomials
models are not efficient. In general, models based on
polynomial surfaces are better for representing smooth
regions. For those active triangles, it is computed the
difference between the blending surface and the origi-
nal image at same region. This prediction error is then
quantized, entropy encoded and sent to the decoder.

5. RESuULTS WITH WAVELETS
DECOMPOSITION

Similar to the Spline Model proposed in [13], our
approach represents the lowest frequency band (base-
band) using a polynomial surface model. We decom-
pose the original image using the FBI fingerprints
wavelets [9] into 7 bands (2 levels of 2D filtering).
This experimental codec uses the RTP algorithm with
the 2nd order blending surface proposed to represent
the baseband. The 6 other bands (detail bands) are
uniformly quantized. The resulting bitstreams from
the 6 bands, the control points, splitting information
and quantized prediction error are entropy encoded us-
ing the arithmetic coder proposed by [3]. The encoder
uses an efficient memory implementation with 3rd or-
der context model presented in [10]. The results for the
proposed codec are presented in the following table:

Images Size Bit-Rate | PSNR
(bytes) | (bpp) | (dB)

Lenna 9601 0.293 32.15
Peppers | 9125 0.278 30.81
Balls 4433 0.135 33.51

We computed the results for the wavelet codec pro-
posed by [2] using only 7 bands:

Images Size Bit-Rate | PSNR
(bytes) | (bpp) | (dB)

Lenna 10057 0.307 30.82
Peppers | 9093 0.277 29.90
Balls 4464 0.136 28.34

The representation of the baseband by the proposed
blending model resulted in a more efficient encoding
than the codec in [2] when both codecs use only 7
bands. Zerotree quantization is not used neither in

our codec nor in [2]. For further decomposition (>7
bands) our simple experimental codec, as it is (see the
next section), does not provide a better tradeoff com-
pression/quality. Nevertheless, it presents both an ob-
jective quality and a resulting perceived quality supe-
rior to the 7-bands codec in [2] for the same bit-rate.
Fig. 6 and Fig. 7 show comparisons for the “Lenna”
image. The additional computational cost associated
to the proposed region based coding is very low since
there is no optimization involved, boundary estimation
or even coefficient determination as in [13] [12].

6. GREEDY OPTIMIZATION FOR THE
CONTROL POINT BITSTREAM

In this section we investigate the optimality of the
proposed model. An optimal solution should jointly
optimize both the partitioning and the control point
bitstream quantization. This optimization would be
extremely complex because the triangular regions can-
not be considered as independent units neither for dis-
tortion nor bit-rate. Since control points are shared
among neighbor regions: modification of a control
point amplitude for a given triangle also affects the dis-
tortion of the neighboring triangles. The dependency
problem is discussed in [1], where optimality is found
using the Lagrangian optimization approach when the
distortion and the bitrate contribution of each coding
unit can be computed independently. When indepen-
dence cannot be assumed, the optimal solution become
exponentially complex on the number of coding units.
In these cases, simplification assumptions and heuris-
tics are used in order to achieve a practical solution.

In face of this dependency problem and associated
complexity, we proposed a sub-optimal solution for
quantization of the control points in [6, 4, 5]. Our
low complexity iterative greedy algorithm provides im-
provements in both compression and quality when com-
pared to the original RTP algorithm. The algorithm
assumes that the image is partitioned by the RTP al-
gorithm and the resulting control points are uniformly
quantized into Ngq levels.

7. RESULTS

The proposed algorithm was applied to the “base-
line” RTP algorithm (without wavelet decomposition).
First, the RTP produces a control point bitstream uni-
form quantized with N, levels. The greedy algorithm
[6, 4, 5] is then applied to this uniform quantized bit-
stream using IV, bins. For the following results we used
N, = 64:



Images Non-optimized | Optimized
(512x512)
Lenna 18442 bytes 15102 bytes
31.12 dB 31.43 dB
0.56 bpp 0.46 bpp
Peppers 23937 bytes 19261 bytes
30.14 dB 30.26 dB
0.73 bpp 0.59 bpp
Balls 4192 bytes 3723 bytes
32.05 dB 32.35 dB
0.13 bpp 0.11 bpp

The results shown above indicate improvements on
both quality and compression rate. The quantization
takes about 15 minutes to improve the bitstream quan-
tization for an image of 512 by 512 pixels, without
wavelet decomposition. However, the decoding time
is not affected at all; the decoding speed is the same
as the non-optimized case. By using the greedy quan-
tization and wavelet decomposition with 7 bands and
10 bands, we achieve the following results:

Images 7 bands 10 bands
(512x512)
Lenna 9276 bytes | 5364 bytes
32.46 dB 30.2 dB
0.28 bpp 0.16 bpp
Peppers | 8772 bytes | 5130 bytes
31.16 dB 29.4 dB
0.27 bpp 0.16 bpp
Balls 4229 bytes | 2863 bytes
34.19 dB 33.6 dB
0.13 bpp 0.087 bpp

For the 7 bands decomposition case, the greedy
quantization considerably improves both compression
and quality as reported in Section 5. For the codec
in [2] with 10 bands and no zerotree quantization, the
compression and quality achieved are almost equivalent
to our proposed codec. Moreover, the perceived qual-
ity of our optimized method is superior for all images,
specially for images presenting many smooth regions,
as in the ”Balls” image.

The overhead due to the optimization quantization
becomes proportionally smaller as the baseband gets
smaller due to the O(n - log(n)) algorithm complexity
[4]. For the 7 bands decomposition the encoding time
is about 1 minute, whereas for the 10 bands decompo-
sition the encoding time is about 20 seconds. These
simulations were performed in an AMD K6-2 300 MHz
notebook under Linux OS (kernel 2.0).

The proposed blending model with the greedy opti-
mization provides a good representation for the base-
band. This representation provided reduced banding

artifacts in baseband when compared to other tech-
niques. This technique is specially appealing for im-
ages presenting smooth regions. The presented results
can be further improved using more elaborated quan-
tization schemes for the detail bands, as the zerotree
quantization.
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Figure 1. Triangular and block partitioning (k=2
and k=4).
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Figure 2. Parameterization (u,v) and control points
of a right-angle triangle.
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Figure 3. Partitioning and corresponding binary
trees.

Figure 4. Triangular partitioning using RTP applied
to “Lenna”.
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Figure 5. Splitting a triangle 7" into 2 triangles.

Figure 6. Result for [2] using 7 bands. PSNR =
30.82 dB, Bit-rate = 0.307 bpp.

Figure 7. Result for the proposed Blending Model
applied to the lowest frequency band of the wavelet
decomposition [6] into 7 bands. PSNR = 32.15 dB,
Bit-rate = 0.293 bpp.



